PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of mechanical properties of diamond-like carbon coatings with various dopants as candidates for biomedical applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the modern world, there is an increasing demand for implants, and technologies connected with their manufacturing. One of the possible paths of their development relates to the use of diamond-like carbon coatings (DLC) for the improvement of surface properties of the biomaterials used for implants. Further improvement of the mentioned properties can be induced by means of doping of the coating. Among the elements which are under current investigation of researchers, the following can be placed: Ag, Si, F, Cu, Ti, Ca and P. This paper reviews previously published experimental data concerning mechanical and physicochemical properties of DLC coatings doped with Ag, Si, Cu, Ti, Ca, F and P as candidates for biomedical applications. Although plenty of articles are published in the mentioned field, the differences of coatings’ synthesis techniques, various sources of dopants and substrates, as well as conducted experiments make no consistent view about a possible solution for their future implementation in medicine. Some of the selected dopants (Cu, Ca, P), still require better characterisation of mechanical properties. There is a necessity to conduct studies of mechanical and physicochemical properties of DLC coatings doped with these elements. This will enable adjustment of the necessary technological parameters to biomedical requirements.
Twórcy
  • Division of Biomedical Engineering and Functional Materials, Institute of Material Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland, kj.doktorant@gmail.com
  • Division of Biophysics, Institute of Material Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
autor
  • Division of Biomedical Engineering and Functional Materials, Institute of Material Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
Bibliografia
  • [1] M. Farías-Kovac, C.R. Szubski, M. Hebeish, A.K. Klika, K. Mishra, W.K. Barsoum, Effect of price capitation on implant selection for primary total hip and knee arthroplasty, J Arthroplasty. 29 (2014) 1345-1249.
  • [2] C.A. Love, R.B. Cook, T.J. Harvey, P.A. Dearnley, R.J.K. Wood, Diamond like carbon coatings for potential application in biological implants- a review, Tribology International 63 (2013) 141-150.
  • [3] B. Kręcisz, Uczulenie na metale a implanty medyczne, Alergia 4 (2012) 17-18.
  • [4] R. Hauert, K. Thorwarth, G. Thorwarth, An overview on diamond-like carbon coatings in medical applications. Surface & Coatings Technology 233 (2013) 119–130.
  • [5] E. Esa Alakoski, V. M. Tiainen, A. Soininen, Y.T. Konttinen, Load-Bearing Biomedical Applications of Diamond-Like Carbon Coatings - Current Status, The Open Orthopaedics Journal 2 (2008) 43-50.
  • [6] M. Castellino, V. Stolojan, A. Alessandro Virga, M. Rovere, K. Cabiale, M.R. Galloni, A. Tagliaferro, Chemico-physical characterisation and in vivo biocompatibility assessment of DLC-coated coronary stents. Anal Bioanal Chem 405 (2013) 321–329.
  • [7] C.A. Charitidis, Nanomechanical and nanotribological properties of carbon-based thin films: A review, Int. Journal of Refractory Metals & Hard Materials 28 (2010) 51-70.
  • [8] A. Olejnik, L. Świątek, D. Bociąga, Biological evaluation of modified DLC coatings – a review, World Scientific News 73(1) (2017) 61–71.
  • [9] N.M. Chekan, N.M. Beliauski, V.V. Akulich, L.V. Pozdniak, E.K. Sergeeva, A.N. Chernov, V.V. Kazbanov, V. A. Kulchitsky, Biological activity of silver-doped DLC films, Diamond and Related Materials 18 (2009) 1006-1009.
  • [10] L.K. Randeniya, A. Bendavid, P.J. Martin, M.S. Amin, R. Rohanizadeh, F. Tang, J.M. Cairney, Thin-lm nanocomposites of diamond-like carbon and titanium oxide; Osteoblast adhesion and surface properties, Diamond and Related Materials, 19 (2010) 329-335.
  • [11] L.K. Randeniya, A. Bendavid, P.J. Martin, M.S. Amin, E.W. Preston, F.S. Magdon Ismail, S. Coe, Incorporation of Si and SiOx into diamond-like carbon films: Impact on surface properties and osteoblast adhesion, Acta Biomaterialia, 5 (2009) 1791-1797.
  • [12] S.C.H. Kwok, P.C.T. Ha, D.R. McKenzie, M.M.M. Bilek, P. K. Chu, Biocompatibility of calcium and phosphorus doped diamond-like carbon thin films synthesized by plasma immersion ion implantation and deposition, Diamond and Related Materials 15 (2006) 893-897.
  • [13] R.K. Roy, H.W. Choi, J.W. Yi, M.W. Moon, K.R. Lee, D.K. Han, J.H. Shin, A. Kamijo, T. Hasebe, Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films, Acta Biomaterialia 1 (2009) 249-256.
  • [14] R. Hauert, A review of modified DLC coatings for biological applications, Diamond and Related Materials 12 (2003) 583–589.
  • [15] G. Dearnaley, J.H. Arps, Biomedical applications of diamond-like carbon (DLC) coatings: A review, Surface and Coatings Technology Vol. 200, No. 7 (2005) 2518–2524.
  • [16] A. Sikora, F. Garrelie, C. Donnet, A. Loir, J. Fontaine, J.C. Sanchez-Lopez, Structure of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation, Journal of Applied Physics 108 (2010).
  • [17] K.A.H. Al Mahmud, M.A. Kalam, H.H. Masjuki, H.M. Mobarak, N.W.M. Zulkifli, An updated overview of diamond-like carbon coating in tribology, Critical Reviews in Solid State and Materials Sciences 40 (2014) 90–118.
  • [18] F. Garrelie, A. Loir, C. Donnet, F. Rogemond, R. Le Harzic, M. Belin, Femtosecond pulsed laser deposition of diamond-like carbon thin films for tribological applications, Surfac & Coatings Technology 163 (2003) 306-312.
  • [19] A. Modabberasl, P. Kameli, M. Ranjbar, H. Salamati, R. Ashiri, Fabrication of DLC thin films with improved diamond-like carbon character by the application of external magnetic field, Carbon 94 (2015) 485-493.
  • [20] D.R. Tallant, J.E. Parmeter, M.P. Siegal and R.L. Simpson, The thermal stability of Diamond like carbon, Diamond and Related Materials 4 (1995) 191–199.
  • [21] A. Erdemir, C. Donnet, Tribology of diamond-like carbon films:recent progress and future prospects, J. Phys. D: Appl. Phys. 39 (2006) R311–R327.
  • [22] P.A. Dearnley, A. Neville, S. Turner, H. Scheibe, R. Tietema, R. Tap, M. Stuber, P.E. Hovsepian, A. Layyous, M. Stenbom, Coatings tribology drivers for high density plasma technologies, Surface Engineering, 26 (2010) 80-96.
  • [23] S. Aisenberg, R. Chabot, Ion-beam deposition of thin films of diamond-like carbon, Journal of Applied Physics 42 (1971), 2953.
  • [24] A.A. Khan, J.A. Woollam, Y. Chung, B. Banks, Interfacial Electrical Properties of Ion-Beam Sputter Deposited Amorphous Carbon on Silicon, Ieee Electron Device Letters 4 (1983) 146-149.
  • [25] J. Vetter, 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications, Surface and Coatings Technology, 257 (2014) 213-240.
  • [26] V.J. Trava-Airoldia, L.F. Bonettia, G. Capotea, L.V. Santosa, E.J. Corata, A comparison of DLC film properties obtained by r.f. PACVD, IBAD, and enhanced pulsed-DC PACVD, Surface and Coatings Technology, 202 (2007) 549–554.
  • [27] J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering R, 37 (2002) 129-281.
  • [28]J. Libardi, K. Grigorov, M. Massi, C. Otani, S.P. Ravagnani, H.S. Maciel, M. Guerino, J.M.J. Ocampo, Comparative studies of the feed gas composition effects on the characteristics of DLC films deposited by magnetron sputtering, Thin Solid Films, 459 (2004) 282–285.
  • [29]S. Sattel, J. Robertson, H. Ehrhardt, Effect of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon J. Appl. Phys, 82 (1997) 4566-5476.
  • [30] X.L. Peng, Z.H. Barber, T.W. Clyne, Surface roughness of diamond-like carbon films preparedusing various techniques, Surface and Coatings Technology 138 (2001) 23-32.
  • [31] S. Chowdhury, M.T. Laugier, I.Z. Rahman, Effects of substrate temperature on bonding structure and mechanical properties of amorphous carbon films, Thin Solid Films, 447–448, (2004) 174–180.
  • [32] S. Chowdhury, M.T. Laugier, I.Z. Rahman, Effect of target self-bias voltage on the mechanical properties of diamond-like carbon films deposited by RF magnetron sputtering, Thin Solid Films, 468 (2004) 149 – 154.
  • [33] X.S. Tang, H.J. Wang, L. Feng, L.X. Shao, C.W. Zou, Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties, Applied Surface Science, 311 (2014) Pages 758-762.
  • [34] K. Bewilogua, C.V. Cooper, C. Specht, J. Schröder, R. Wittorf, M. Grischke, Effect of target material on deposition and properties of metal-containing DLC (Me-DLC) coatings, Surface and Coatings Technology, 127 (2000) 223-231.
  • [35] F. Li, S. Zhang, J. Kong, Y. Zhang, W. Zhang, Multilayer DLC coatings via alternating bias during magnetron sputtering, Thin Solid Films 519 (2011) 4910–4916.
  • [36] M. Vilaa, E. Salgueiredo, M.S. Amaral, A.J.S. Fernandes, F.M. Costa, A. Cavaleiro, R.F. Silva, Hard a-C/DLC coatings on Si3N4–bioglass compositesm, Diamond & Related Materials, 15 (2006) 944–947.
  • [37] S. Chowdhury, M.T. Laugier, I.Z. Rahman, Characterization of DLC coatings deposited by rf magnetron sputtering, Journal of Materials Processing Technology, 153-154 (2004) 804-810.
  • [38] C.R. Lin, C.H. Su, C.K. Chang, D.H. Wei, Deposition of Diamond-like Carbon Films and Metal-DLC thin films on PCBN Substrates by RF Magnetron Sputtering Method, International Conference on Materials for Advanced Technologies 2009.
  • [39] M. Huanga, X. Zhang, P. Ke, A. Wang, Graphite-like carbon films by high power impulse magnetron sputtering, Applied Surface Science, 283 (2013) 321– 326.
  • [40] J.C. Sung, M.C. Kan, M. Sung, Fluorinated DLC for tribological applications, International Journal of Refractory Metals and Hard Materials, 27( 2009) 421-426.
  • [41] C. Donnet, Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review, Surface and Coatings Technology 100–101 (1998) 180-186.
  • [42] A. Banerji, S. Bhowmick, A.T. Alpas, High temperature tribological behavior of W containing diamond-like carbon (DLC) coating against titanium alloys, Surface & Coatings Technology 241 (2014) 93–104.
  • [43] A. Abou Gharam, M.J. Lukitsch, M.P. Balogh, N. Irish, A.T. Alpas, High temperature tribological behavior of W-DLC against aluminium, Surface & Coatings Technology 206 (2011) 1905–1912.
  • [44] A.A. Voevodin, M.A. Capano, S.J.P. Laube, M.S. Donley, J.S. Zabinski, Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti–C thin films, Thin Solid Films 298 (1997) 107–115.
  • [45] C. Schwarz, J. Heeg, M. Rosenberg, M. Wienecke, Investigation on wear and adhesion of graded Si/SiC/DLC coatings deposited by plasma-enhanced-CVD, Diamond and Related Materials, 17 (2008) 1685–1688.
  • [46] M. Grischke, K. Bewilogua, K. Trojan, H. Dimigen, Application-oriented modifications of deposition processes for diamond-like-carbon-based coatings. Surf. Coat. Technol. 74/75 (1996) 739–745.
  • [47] S. Wana, L. Wanga, J. Zhanga, Q. Xuea, Field emission properties of DLC and phosphorus-doped DLC films prepared by electrochemical deposition process, Applied Surface Science 255 (2009) 3817–3821.
  • [48] Y.H. Lin, H.D. Lin, C.K. Liu, M.W. Huang, Y.C. Chen, J.R. Chen, H.C. Shih, Annealing effect on the structural, mechanical and electrical properties of titanium-doped diamond-like carbon films, Thin Solid Films 518 (2009) 1503-1507.
  • [49] Z. Seker, H. Ozdamar, M. Esen, R. Esen, H. Kavak, The effect of nitrogen incorporation in DLC films deposited by ECR Microwave Plasma CVD, Applied Surface Science 314 (2014) 46–51.
  • [50] A.S. Chausa, T.N. Fedosenkoa, A.V. Rogachevb, L. Čaploviča, Surface, microstructure and optical properties of copper-doped diamond-like carbon coating deposited in pulsed cathodic arc plasma, Diamond and Related Materials 42 (2014) 64–70.
  • [51] S. Meškinis, A. Vasiliauskas, K. Šlapikas, G. Niaura, R. Juškėnas, M. Andrulevičius, S. Tamulevičius, Structure of the silver containing diamond like carbon films: Study by multiwavelength Raman spectroscopy and XRD, Diamond and Related Materials, 40 (2013) 32-37.
  • [52] D. Batory, M. Czerniak–Reczulska, Ł. Kolodziejczyk, W. Szymanski, Gradient titanium and silver based carbon coatings deposited on AISI316L, Applied Surface Science, 275 (2013) 303-310.
  • [53] K. Baba, R. Hatada, S. Flege, W. Ensinger, Y. Shibata, J. Nakashima, T. Sawase, T. Morimura, Preparation and antibacterial properties of Ag-containing diamond-like carbon films prepared by a combination of magnetron sputtering and plasma source ion implantation, 89 (2013) 179-184.
  • [54] T. Takeno, H. Saito, M. Goto, J. Fontaine, H. Miki, M. Belin, T. Takagi, K. Adachi, Deposition, structure and tribological behavior of silver–carbon nanocomposite coatings, Diamond and Related Materials, 39 (2013) 20-26.
  • [55] H.W. Choi, R.H. Dauskardt, S.C. Lee, K.R.I. Lee, K.H. Oh, Characteristic of silver doped DLC films on surface properties and protein adsorption, Diamond and Related Materials, Volume 17, 3 (2008) 252-257.
  • [56] W.C. Lan, S.F. Ou, M.H. Lin, K.L. Ou, M.Y. Tsai, Development of silver-containing diamond-like carbon for biomedical applications. Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms, Ceramics International, 39 (2013) 4099-4104.
  • [57] N.K. Manninen, F. Ribeiro, A. Escudeiro, T. Polcar, S. Carvalho, A. Cavaleiro, Influence of Ag content on mechanical and tribological behavior of DLC coatings, Surface and Coatings Technology, 232 (October 2013) 440-446.
  • [58] Y. Wu, J. Chen, H. Li, L. Ji, Y. Ye, H. Zhou, Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering, Applied Surface Science, 284 (2013) 165-170.
  • [59] L. Incerti, A. Rota, S. Valeri, A. Miguel, J.A. García, R.J. Rodríguez, J. Osés, Nanostructured self-lubricating CrN-Ag films deposited by PVD arc discharge and magnetron sputtering, Vacuum 85 (2011) 1108-1113.
  • [60] J.C. Sánchez-López, M.D. Abad, I. Carvalho, R. Escobar Galindo, N. Benito, S. Ribeiro, M. Henriques, A. Cavaleiro, S. Carvalho, Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings, Surface & Coatings Technology 206 (2012) 2192–2198.
  • [61] X. Yu, Y. Qin, C.B. Wang, Y.Q. Yang, X.C. Ma, Effects of nanocrystalline silver incorporation on sliding tribological properties of Ag-containing diamond-like carbon films in multi-ion beam assisted deposition, Vaccum 89 (2013), 82-85.
  • [62] N. Dwivedi, S. Kumar, H.K. Malik, C. Sreekumar, S. Dayal, C.M.S. Rauthan, O.S. Panwar, Investigation of properties of Cu containing DLC films produced by PECVD process, Journal of Physics and Chemistry of Solids 73 (2012) 308-316.
  • [63] M.Y. Tsai, M.S. Huang, L.K. Chen, Y.D. Shen, M.H. Lin, Y.C. Chiang, K.L. Ou, S.F. Ou, Surface properties of copper-incorporated diamond-like carbon films deposited by hybrid magnetron sputtering, Ceramics International, 39 (2013) 8335-8340.
  • [64] Y.H. Chan, C.F. Huang, K.L. Ou, P.W. Peng, Mechanical properties and antibacterial activity of copper doped diamond-like carbon films Surface and Coatings Technology 206 (2011) 1037-1040.
  • [65] A. Pardo, J.G. Buijnsters, J.L. Endrino, C. Gómez-Aleixandre, G. Abrasonis, R. Bonet, J. Caro, Effect of the metal concentration on the structural, mechanical and tribological properties of self-organized a-C:Cu hard nanocomposite coatings. Applied Surface Science 280 (2013) 791-798.
  • [66] C.C. Chen, F.C.N. Hong, Structure and properties of diamond-like carbon nanocomposite films containing copper nanoparticles, Applied Surface Science 242 (2005) 261-269.
  • [67] S. Hussain, A.K. Pal, Synthesis of composite films of mixed Ag–Cu nanocrystallites embedded in DLC matrix and associated surface plasmon properties, Applied Surface Science 253 (2007) 3649–3657.
  • [68] V. Kopustinskas, S. Meškinis, S. Tamulevičius, M. Andrulevičius, B. Čižiūte, G. Niaura, Synthesis of the silicon and silicon oxide doped a-C:H films from hexamethyldisiloxane vapor by DC ion beam, Surface and Coatings Technology 200 (2006) 6240-6244.
  • [69] A. Bendavid, P.J. Martin, C. Comte, E.W. Preston, A.J. Haq, F.S. Ismail, R.K. Singh, The mechanical and biocompatibility properties of DLC-Si films prepared by pulsed DC plasma activated chemical vapor deposition, Diamond and Related Materials, 16 (2007) 1616-1622.
  • [70] M. Ikeyama, S. Nakao, Y. Miyagawa, S. Miyagawa, Effects of Si content in DLC films on their friction and wear properties, Surface and Coatings Technology 191 (2005) 38-42.
  • [71] C.S. Park, S.G. Choi, J.N. Jang, M.P. Hong, K.H. Kwon, H.H. Park, Effect of boron and silicon doping on the surface and electrical properties of diamond like carbon films by magnetron sputtering technique, Surface and Coatings Technology 231(2013) 131-134.
  • [72] J. Wang, J. Pu, G. Zhang, L. Wang, Tailoring the structure and property of silicon-doped diamond-like carbon films by controlling the silicon content, Surface and Coatings Technology, 235 (2013) 326-332.
  • [73] J.F. Zhao, P. Lemoine, Z.H. Liu, J.P. Quinn, P. Maguire, J.A. McLaughlin, A study of microstructure and nanomechanical properties of silicon incorporated DLC films deposited on silicon substrates, Diamond and Related Materials, 10, (2001) 1070-1075.
  • [74] S. Fujimoto, N. Ohtake, O. Takai, Mechanical properties of silicon-doped diamond-like carbon films prepared by pulse-plasma chemical vapor deposition, Surface and Coatings Technology 206 (2011) 1011-1015.
  • [75] T. Grotjahn, O. Aslanbas, M. Mee, M. König, S. Meier, Plasma parameter investigation during plasma-enhanced chemical vapor deposition of silicon-containing diamond-like carbon films, Surface and Coatings Technology 237 (2013) 126-134.
  • [76] D. Hofmann, S. Kunkel, K. Bewilogua, R. Wittorf, From DLC to Si-DLC based layer systems with optimized properties for tribological applications, Surface and Coatings Technology, 215 (2013) 357-363.
  • [77] M.G. Kim, K.R. Lee, K.Y. Eun, Tribological behavior of silicon-incorporated diamond-like carbon films, Surface and Coatings Technology, 112 (1999) 204-209.
  • [78] R. Gilmore, R. Hauert, Control of the tribological moisture sensitivity of diamond-like carbon films by alloying with F, Ti or Si, Thin Solid Films 398-399 (2001) 199-204.
  • [79] J.G. Kim, K.R. Lee, S.J. Yang, Wear-corrosion performance of Si-DLC coatings on Ti-6Al-4V substrate, J Biomed Mater Res A. 86 (2008) 41-7.
  • [80] B.J. Jones, A. Mahendran, A.W. Anson, A.J. Reynolds, R. Bulpett, J. Franks, Diamond-like carbon coating of alternative metal alloys for medical and surgical applications, Diamond and Related Materials 19 (2010) 685-689.
  • [81] J. Choi, M. Kawaguchi, T. Kato, M. Ikeyama, Deposition of Si-DLC film and its microstructural, tribological and corrosion properties, Microsystem Technologies 13(2007) 1353-1358.
  • [82] H. Schulza, M. Leonhardt, H.J. Scheibeb, B. Schultricha, Ultra hydrophobic wetting behaviour of amorphous carbon films, Surf. Coat. Technol. 200 (2005) 123–1126.
  • [83] M. Ishihara, T. Kosaka, T. Nakamura, K. Tsugawa, M. Hasegawa, F. Kokai, Y. Koga, Antibacterial activity of fluorine incorporated DLC films, Diamond and Related Materials 15 (2006) 1011-1014.
  • [84] T. Hasebe, S. Nagashima, A. Kamijo, T. Yoshimura, T. Ishimaru, Y. Yoshimoto, S. Yohena, H. Kodama, A. Hotta, K. Takahashi, T. Suzuki, Depth profiling of fluorine-doped diamond-like carbon (F-DLC) film: Localized fluorine in the top-most thin layer can enhance the non-thrombogenic properties of F-DLC, Thin Solid Films 516, (2007) 299-303.
  • [85] F.L. Freire, M.E.H. Maia da Costaa, L.G. Jacobsohnb, D.F. Franceschini, Film growth and relationship between microstructure and mechanical properties of a-C:H:F films deposited by PECVD, Diamond and Related Materials 10 (2001) 125-131.
  • [86] A. Bendavid, P.J. Martin, L. Randeniya, M.S. Amin, The properties of fluorine containing diamond-like carbon films prepared by plasma-enhanced chemical vapour deposition, Diamond and Related Materials 18 (2009) 66–71.
  • [87] X.M. He, M. Hakovirta, M. Nastasi, Hardness, hydrophobic and optical properties of fluorine and boron co-alloyed diamond-like carbon films. Mat. Lett. 59 (2005) 1417–1421.
  • [88] C. Donnet, J. Fontaine, A. Grill, V. Patel, C. Jahnes, M. Belin, Wear-resistant fluorinated diamond like carbon films, Surf. Coat. Technol. 94/95 (1997) 531–536.
  • [89] J. Wang, F. Wang, J. Li, Q. Sun, P. Yuan, Y. Jia, Comparative study of friction properties for hydrogen- and fluorine-modified diamond surfaces: A first-principles investigation, Surface Science 608 (2013) 74–79.
  • [90] D. Boonyawana, S. Sarapiroma, S. Tunmaa, C. Chaiwonga, P. Rachtanapunc, R. Aurasd, Characterization and antimicrobial properties of fluorine-rich carbon films deposited on poly(lactic acid). Surface and Coatings Technology 205 (2011) 552–557.
  • [91] G.Q. Yu, B.K. Tay, Z. Sun, L.K. Pan, Properties of fluorinated amorphous diamond like carbon films by PECVD, Applied Surface Science 219 (2003) 228–237.
  • [92] F.R. Marciano, E.C. Almeida, D.A. Lima-Oliveira, E.J. Corat, V.J. Trava-Airoldi, Improvement of DLC electrochemical corrosion resistance by addiction of fluorine, Diamond & Related Materials 19 (2010) 537–540.
  • [93] G. Ma, S. Gong, G. Lin, L. Zhang, G. Sun, A study of structure and properties of Ti-doped DLC film by reactive magnetron sputtering with ion implantation, Applied Surface Science 258 (2012) 3045-3050.
  • [94] P.C. Tsai, Y.F. Hwang, J.Y. Chiang, W.J. Chen, The effects of deposition parameters on the structure and properties of titanium-containing DLC films synthesized by cathodic arc plasma evaporation, Surface and Coatings Technology, 202 (2008) 5350-5355.
  • [95] D. Caschera, F. Federici, S. Kaciulis, L. Pandolfi, A. Cusmà, G. Padeletti, Deposition of Ti-containing diamond-like carbon (DLC) films by PECVD technique, Materials Science and Engineering: C 27 (2007) 1328-1330.
  • [96] P.V. Bharathy, D. Nataraj, P.K. Chu, H. Wang, Q. Yang, M.S.R.N. Kiran, J. Silvestre-Albero, D. Mangalaraj, Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method, Applied Surface Science 257 (2010) 143-150.
  • [97] Q. Wang, F. Zhou, Z. Zhou, Y. Yang, C. Yan, C. Wang, W. Zhang, L.K.Y. Li, I. Bello, S.T. Lee, Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication, Diamond and Related Materials 25 (2012) 163-175.
  • [98] J.X. Pang, H. Yang, K. Gao, Y. Wang, A.A. Volinsky, AlTiN layer effect on mechanical properties of Ti-doped diamond-like carbon composite coatings, Thin Solid Films 519 (2011) 5353-5357.
  • [99] W. Hong-mei, Z. Wei, Y. He-long, L. Qing-liang, Tribological properties of DLC films prepared by magnetron sputtering, Physics Procedia, 18 (2011) 274-278.
  • [100] W.J. Meng, R.C. Tittsworth, L.E. Rehn, Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings, Thin Solid Films 377–378 (2000) 222-232.
  • [101] S. Zhang, X.L. Bui, J. Jiang, X. Li, Microstructure and tribological properties of magnetron sputtered nc-TiC/a-C nanocomposite, Surface and Coatings Technology 198 (2005) 206-211.
  • [102] W. Dai, P. Ke, M.W. Moon, K.R. Lee, A. Wang, Investigation of the microstructure, mechanical properties and tribological behaviors of Ti-containing diamond-like carbon films fabricated by a hybrid ion beam method, Thin Solid Films 520 (2012) 6057-6063.
  • [103] L. Qiang, B. Zhang, Y. Zhou, J. Zhang, Improving the internal stress and wear resistance of DLC film by low content Ti doping, Solid State Sciences 20 (2013) 17-22.
  • [104] J. Cui, L. Qiang, B. Zhang, X. Ling, T. Yang, J. Zhang, Mechanical and tribological properties of Ti-DLC films with different Ti content by magnetron sputtering technique, Applied Surface Science 258 (2012) 5025-5030.
  • [105] P. Yang, C.C. Sung, Y.K. Fuh, C.L. Chu, C.H. Lo, Ti-containing hydrogenated carbon films fabricated by high-power plasma magnetron sputtering, Transactions of Nonferrous Metals Society of China 22 (2012) 1381-1386.
  • [106] Y.H. Lin, H.D. Lin, C.K. Liu, M.W. Huang, J.R. Chen, H.C. Shih, Structure and characterization of the multilayered Ti-DLC films by FCVA. Diamond and Related Materials, 19 (2010) 1034-1039.
  • [107] A. Dorner-Reisel, C. Schürer, G. Reisel, F. Simon, G. Irmer, E. Müller, Ca-O-modified diamond-like carbon coatings synthesised by a direct current discharge, Thin Solid Films 398–399 (2001) 180-186.
  • [108] A. Dorner-Reisel, C. Schürer, G. Reisel, F. Simon, G. Irmer, E. Müller, Diamond-like carbon: alteration of the biological acceptance due to Ca–O incorporation, Thin Solid Films 420–421 (2002) 263-268.
  • [109] M.T. Kuo, P.W. May, A. Gunn, M.N.R. Ashfold, R.K. Wild, Studies of phosphorus doped diamond-like carbon films, Diamond and Related Materials 9 (2000) 1222–1227.
  • [110] S.M. Mominuzzaman, H. Ebisu, T. Soga, T. Jimbo, M. Umeno, Phosphorus doping and defect studies of diamond-like carbon films by pulsed laser deposition using camphoric carbon target, Diamond and Related Materials, 10 (2001) 984-988.
  • [111] S.C.H Kwok, G.J. Wan, J.P.Y. Ho, P.K. Chu, M.M.M. Bilek, D.R. McKenzie, Characteristics of phosphorus-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PIII and D), Surface & Coatings Technology 201 (2007) 6643–6646.
  • [112] O.S. Panwar, M.A. Khan, B.S. Satyanarayana, S. Kumar, Properties of boron and phosphorous incorporated tetrahedral amorphous carbon films grown using filtered cathodic vacuum arc process, Applied Surface Science 256 (2010) 4383-4390.
  • [113] S.C.H. Kwok, J. Wang, P.K. Chu, Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films, Diamond and Related Materials 14 (2005) 78-85.
  • [114] K. Baba, R. Hatada, S. Flege, W. Ensinger, Y. Shibata, J. Nakashima, T. Sawase, T. Morimura, Preparation and antibacterial properties of Ag-containing diamond-like carbon films prepared by a combination of magnetron sputtering and plasma source ion implantation, Vacuum 89 (2013) 179–184.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be5d8dcc-5fa0-4454-a596-aa46b8ed283c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.