Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-be00918d-48a5-48f6-b87b-bd904b721ef8

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Is bearing resistance negligible during wheelchair locomotion? Design and validation of a testing device

Autorzy Bascou, J.  Sauret, Ch.  Lavaste, F.  Pillet, H. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: Among the different resistances occurring during wheelchair locomotion and that limit the user autonomy, bearing resistance is generally neglected, based on a few studies carried out in static conditions and by manufacturer’s assertion. Therefore, no special attention is generally paid to the mounting and the maintenance of manual wheelchair bearings. However, the effect of inadequate mounting or maintenance on wheelchair bearing resistance has still to be clarified. This study aimed at filling this gap by developing and validating a specific device allowing the measurement of wheelchair bearing friction, characterized by low speed velocities, with an accuracy lower than 0.003 Nm. Methods: The bearing resistance measured by the device was compared to free deceleration measurement, intra and inter operator reproducibility were assessed. A factorial experiment allowed the effects of various functioning parameters (axial and radial loads, velocity) to be classified. Results: The device allowed significant differences in the bearing resistance of static and rotating conditions to be measured, even if a relatively high proportionality was found between both conditions. The factorial experiment allowed the expected impact of the radial load on bearing resistance as well as the predominant effect of the axial load to be demonstrated. Conclusions: As a consequence, it appeared that the control of the axial load is compulsory for measurement purposes or during wheel mounting, to avoid significant increase of global resistance during wheelchair locomotion. The findings of this study could help enhancing the models which assess manual wheelchair mechanical power from its settings and use conditions.
Słowa kluczowe
PL wózek inwalidzki   nośność   prędkość obrotowa  
EN wheelchair   bearing resistance   rotation velocity  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 3
Strony 165--176
Opis fizyczny Bibliogr. 16 poz., rys., wykr.
Twórcy
autor Bascou, J.
  • Institution Nationale des Invalides, Centre d’Etudes et de Recherche sur l’Appareillage des Handicapés, Woippy, France. 2 Arts et Métiers, Institut de Biomécanique Humaine Georges Charpak, Paris, France, joseph.bascou@invalides.fr
autor Sauret, Ch.
  • Arts et Métiers, Institut de Biomécanique Humaine Georges Charpak, Paris, France
autor Lavaste, F.
  • Arts et Métiers, Institut de Biomécanique Humaine Georges Char pak, Paris, France
autor Pillet, H.
  • Arts et Métiers, Institut de Biomécanique Humaine Georges Char pak, Paris, France
Bibliografia
[1] BURTON M., SUBIC A., MAZUR M., LEARY M., Systematic design customization of sport wheelchairs using the Taguchi method, Procedia Eng., 2010, 2, 2659–2665.
[2] COOPER R.A., A systems approach to the modeling of racing wheelchair propulsion, J. Rehabil. Res. Dev., 1990, 27, 151–162.
[3] FAUPIN A., CAMPILLO P., WEISSLAND T., GORCE P., THEVENON A., The effects of rear-wheel camber on the mechanical parameters produced during the wheelchair sprinting of handibasketball athletes, J. Rehabil. Res. Dev., 2004, 41, 421–428.
[4] KELLERMAN R., KLEIN, H.-C., Untersuchungen über den Einfluß der Reibung auf Vorspannung und Anzugsmoment von Schraubenverbindungen, in Konstruction, Vol. 2, Springer Verlag, 1955.
[5] FRANK T.G., ABEL E.W., Measurement of the turning, rolling and obstacle resistance of wheelchair castor wheels, J. Biomed. Eng., 1989, 11, 462–466.
[6] HOFFMAN M.D., MILLET G.Y., HOCH A.Z., CANDAU R.B., Assessment of wheelchair drag resistance using a coasting deceleration technique, Wheelchairs, 2003.
[7] HOFSTAD M., PATTERSON P.E., Modelling the propulsion characteristics of a standard wheelchair, J. Rehabil. Res. Dev., 1994, 31, 129–137.
[8] MEDOLA F.O., DAO P.V, CASPALL J.J., SPRIGLE S., Partitioning Kinetic Energy During Free wheeling Wheelchair Maneuvers, IEEE Trans. Neural Syst. Rehabil. Eng., 2014, 22, 326–333.
[9] PALEU V., CREŢU S., DRĂGAN B., BĂLAN R., Test Rig for Friction Torque Measurement in Rolling Bearings, Mach. Des., 2004, 85–91.
[10] POULY F., Modélisation thermomécanique d’un roulement à billes grande vitesse, Recherche, 2010.
[11] SAURET C., BASCOU J., RMY N. DE SAINT, PILLET H.H., VASLIN P., LAVASTE F.F. et al., Assessment of field rolling resistance of manual wheelchairs, J. Rehabil. Res. Dev., 2012, 49, 63.
[12] Schaeffler Group Industrial, Media tool, (n.d.).
[13] SKF, SKF web tools, (n.d.).
[14] SPAEPEN A.J., VANLANDEWIJCK Y.C., LYSENS R.J., Relationship between energy expenditure and muscular activity patterns in handrim wheelchair propulsion, Int. J. Ind. Ergon., 1996, 17, 163–173.
[15] TAGUCHI G., The System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs, 1987.
[16] VAN DER WOUDE L.H.V., DE GROOT S., JANSSEN T.W.J., Manual wheelchairs: research and innovation in sports and daily life, Sci. Sports, 2006, 21, 226–235.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-be00918d-48a5-48f6-b87b-bd904b721ef8
Identyfikatory
DOI 10.5277//abb-00659-2016-03