Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Archives of Electrical Engineering

Tytuł artykułu

Steady-state time-periodic finite element analysis of a brushless DC motor drive considering motion

Autorzy Jagieła, M.  Gwóźdź, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN This paper aims at providing a framework for comprehensive steady-state time-domain analysis of rotating machines considering motion. The steady-state waveforms of electromagnetic and circuit quantities are computed via iterative solution of the nonlinear field-circuit-and-motion problem with constraints of time periodicity. The cases with forced speed and forced load torque are considered. A comparison of execution times with a conventional time-stepping transient model is carried out for two different machines. The numerical stability of a time-periodic model with forced speed is shown to be worse than that of traditional transient time-stepping one, although the model converges within a reasonable number of iterations. This is not the case if forced load via equation of mechanical balance is accounted for. To ensure convergence of the iterative process the physical equation of motion is replaced by the fixed-point equation. In this way the model delivers time-periodic solutions regarding not only the electromagnetic quantities but also the rotational speed.
Słowa kluczowe
EN finite elements   brushless machines   inverter drives   steady-state   mathematical modeling  
Wydawca Polish Academy of Sciences, Electrical Engineering Committee
Czasopismo Archives of Electrical Engineering
Rocznik 2015
Tom Vol. 64, nr 3
Strony 471--486
Opis fizyczny Bibliogr. 21 poz., rys., tab., wz.
autor Jagieła, M.
  • Opole University of Technology Institute of Electromechanical Systems and Industrial Electronics ul. Prószkowska 76, 45-758 Opole, Poland,
autor Gwóźdź, J.
  • Opole University of Technology Institute of Electromechanical Systems and Industrial Electronics ul. Prószkowska 76, 45-758 Opole, Poland,
[1] Ashtiani C. N., Lowther D. A., The use of finite elements in the simulation of steady state operation of a synchronous generator with a known terminal loading condition. IEEE Trans. Magn. 19(6): 2381-2384 (1983).
[2] Zhou P., McDermott, Cendes Z. J., Rahman M.A., Steady-state analysis of synchronous generator by a coupled field-circuit method. Rec. of International Electric Machines and Drives Conference, 18-21 may, Milwakee, USA. pp. WC2/2.1-WC2/2.3 (1997).
[3] Kurihara K., Wakui G., Kubota T., Steady-state performance analysis of permanent magnet syn chronous motor including space harmonics. IEEE Trans. Magn. 30(3): 1306-1315 (1994).
[4] Li S. H., Numerically efficient steady-state finite element analysis of magnetically saturated electromechanical devices. IEEE Trans. Magn. 39(6): 3481-3485 (2003).
[5] Gonzales A., Hernandez C., Arjona-Lopez M., A 2D-Fe magnetostatic model of a PMSG for predicting its steady-state performance under different loading conditions. IET Electric Power Applications 7(3): 207-213 (2013).
[6] Yamada S., Bessho K., Lu J., Harmonic balance finite element method applied to nonlinear AC magnetic analysis. IEEE Trans. Magn. 25(4): 2971-2973 (1989).
[7] Gyselinck J., Dular P., Vandevelde L. et al., Two-dimensional harmonic balance finite element modeling of electrical machines taking motion into account. Int. Journ. Math. Electr. Electron. Eng. COMPEL 22(4): 1021-1036 (2003).
[8] Hara T., Naito T., Umoto J., Field analysis of corona shield region in high voltage rotating machines by time-periodic finite element mehod. Journal of IEE Japan 102B(7): 423-430 (1982).
[9] Nakata T., Takahashi N., Fujiwara K., Ahagon A., 3-D non-linear eddy current analysis using the time-periodic finite element method. IEEE Trans. Magn. 25(5): 4150-4152 (1989).
[10] Nakata T., Takahashi N., Fujiwara K. Practical analysis of 3-D dynamic nonlinear magnetic field using time periodic finite element method. IEEE Trans. Magn. 31(3): 1416-1419 (1995).
[11] Takahashi Y., Kaimori H., Kameari A. et al., Convergence acceleration in steady state analysis of synchronous machines using time-periodic explicit error correction method. IEEE Trans. Magn. 47(5): 1422-1425 (2011).
[12] Takahashi Y., Tokumatsu T., Fujita M. et al., Time-domain parallel finite element method for fast magnetic field analysis of induction motors. IEEE Trans. Magn. 49(5): 2413-2416 (2013).
[13] Peterson W., Fixed-point technique in computing nonlinear eddy current problems. Int. Journ. Math. Electr. Electron. Eng. COMPEL 22(2): 231-252 (2003).
[14] Biró O., Koczka G., Leber G. et al., Finite element analysis of three-phase three-limb power transformer under DC bias. IEEE Trans. Magn. 50(2): 7013904 (2014).
[15] Plexim GMbH, Piecewise-Linear Electric Circuit Simulator (PLECS), Documentation/, Accessed May (2014).
[16] Jagiela M., Gwóźdź J., Garbiec T., Time-periodic steady-state finite element model of inverter driven rotating machine. Proc. of XXIII Int. Symp. Electromagnetic Phenomena in Nonlinear Circuits, 2-4 July, Plsen, Czech Republic (2014).
[17] Davis T.A., Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software 30(2): 196-199 (2004).
[18] Dziwniel P., Boualem B., Piriou F. et al., Comparison between two approaches to model induction machines with skewed slots. IEEE Trans. Magn. 36(4): 1453-1457 (2000).
[19] Oliveira A.M., Antunes R., Kuo-Peng P., Sadowski N., Dular P., Electrical machine analysis considering field-circuit-movement and skewing effect. Int. Journ. Math. Electr. Electron. Eng. COMPEL 23(4): 357-360 (2004).
[20] Demenko A., Wojciechowski R. M., Sykulski J.K., On the equivalence of finite element and finite integration formulations. IEEE Trans. Magn. 46(8): 3169-3172 (2010).
[21] Demenko A., Łyskawinski W., Wojciechowski R. M., Equivalent formulas for global magnetic force calculation from finite element solution. IEEE Trans. Magn. 48(2): 195-198 (2012).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-bcbf374d-1f46-4c0c-9889-1db7c54b4581
DOI 10.2478/aee-2015-0036