Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Zeszyty Naukowe. Cieplne Maszyny Przepływowe - Turbomachinery / Politechnika Łódzka

Tytuł artykułu

The bionic approach in noise reduction of the fluid machinery

Autorzy Kopania, J.  Bogusławski, G. 
Treść / Zawartość
Warianty tytułu
Konferencja International Symposium on Compressor & Turbine Flow Systems Theory & Application Areas "SYMKOM" (11 ; 20-23.10.2014 ; Łódź, Polska)
Języki publikacji EN
EN At the present time minimization of the noise emission is an important issue. The most difficult is reducing source noise, but this is an important issue and must be considered in the design of future devices. Bionics is a novel approach to developing designs and products by taking inspiration from nature. Our studies about the aerodynamic noise of blades are inspired by owls. In this study the aeroacoustical parameters of wings the different species of owls were connect with their geometrical parameters. Thanks to this will be possible to design the “acoustically friendly” blade of fan.
Słowa kluczowe
PL bionika   sowy   redukcja szumów  
EN bionics   owls   noise reduction  
Wydawca Wydawnictwo Politechniki Łódzkiej
Czasopismo Zeszyty Naukowe. Cieplne Maszyny Przepływowe - Turbomachinery / Politechnika Łódzka
Rocznik 2014
Tom nr 146
Strony 101--117
Opis fizyczny Bibliogr 60 poz.
autor Kopania, J.
  • Department of Fundamentals of Technology and Industrial Ecology, Institute of Social Sciences and Management of Technologies, Lodz University of Technology, 90-924 Lodz, 266 Piotrkowska Street, Poland,
autor Bogusławski, G.
  • Department of Fundamentals of Technology and Industrial Ecology, Institute of Social Sciences and Management of Technologies, Lodz University of Technology, 90-924 Lodz, 266 Piotrkowska Street, Poland
[1] Inventory of Potential Measures for a Better Control of Environmental Noise, (May 2010) Final Report by Milieu Ltd for DG Environment of the European Commission
[2] Research for a Quieter Europe in 2020, (2007) European Commission Research Directorate-General, An updated strategy of paper of the CALM II Network, Ferb.
[3] ZHI N. etc. (1985) Fan Noise Control technology [M]. China Machine Press. 9
[4] ISO/TR 11 688-1 and -2 (1995). Recommended practice for the design of low-noise machinery and equipment
[5] Benyus, M. J., (1997) Biomimicry: Innovation inspired by nature, New York: Morrow
[8] Watts P., Fish F.E., The influence of passive, leading edge tubercles on wing performance
[9] Miklosovic D.S., Murray M.M., Fish F.E., Howlea L.E., Leading-edge tubercles delay stall on humpback whale „Megaptera novaeangliae… flippers, Physics of Fluids, v. 16, nr 5, 39-42, 2004
[10] Ernst A. van Nierop, Silas Alben, Michael P. Brenner, How Bumpson Whale Flippers Delay Stall: An Aerodynamic Model, Physical Review Letters, 2008, DOI: 10.1103/PhysRevLett.100.054502
[11] Kesel A B, Philippi U, Nachtigall W. Biomechanical aspects of the insect wing: An analysis using the finite element method. Comp Biol Med, 1998, 28(4): 423–437
[12] Wakeling J M, Ellington C P. Dragonfly flight Ⅲ. Lift and power requirements. J Exp Biol, 1997, 200: 583–600
[13] Newman D J, Wootton R J. An approach to the mechanics of pleating in dragonfly wings. J Exp Biol, 1986, 126(1): 361–372
[14] Chen J S, Chen J Y , Chou Y F. On the natural frequencies and mode shapes of dragonfly wings. J. Sound Vibr, 2008, 313: 643–654
[15] Sudo S, Tsuyuki K, Tani J. Wing morphology of some insects. JSME Int J Ser C, 2000, 43(4):895–900
[16] Rajabi H, Moghadami M, Darvizeh A. Investigation of microstructure, natural frequencies and vibration modes of dragonfly Wing. J Bionic Eng, 2011, 8: 165–173
[17] Elarbi E M, Qin N. Effects of pitching rotation on aerodynamics of tandem flapping wing sections of a hovering dragonfly. Aeronaut J, 2010, 114(1161): 699–710
[18] Hsieh C T, Kung C F, Chang C C, et al. Unsteady aerodynamics of dragonfly using a simple wing-wing model from the perspective of a force decomposition. J Fluid Mech, 2010, 663: 233–252
[20] Marcha E., (1904), Über die Schwungfedern. Zeitschrift für wissenschaftliche Zoologie 77, pages 606-651
[21] Graham R.R., (1934) The silent flight of owls. Journal of the Royal Aeronautical Society, 38:837–843
[22] Thorpe W. H., Griffin D. R., (1962), The lack of ultrasonic components in the flight noise of owls compared with other birds., IBIS, 104:256-257
[23] Lilley G. M., (1998), A study of the silent flight of the owl, AAIA Paper, 1998-2340
[24] Lilley G. M., (2001), The prediction of airframe noise and comparison with experiment, Journal of Sound and Vibration, 239:849-859
[25] Lilley G. M., (2004), A quest for quiet commercial passenger transport aircraft for take-off and landing. In 10th AIAA/CEAS Aeroacoustics Conference, AIAA 2004-2922
[26] Sarradj E., Fritzschey C., Geyery T., (2010), Silent Owl Flight: Bird Flyover Noise Measurements, 16th AIAA/CEAS Aeroacoustics Conference 2010, AIAA 2010-3991
[27] Geyer T., Sarradj E., Fritzsche C., (2010a), Porous airfoils: noise reduction and boundary layer effect, International journal of aeroacoustics, v. 9, nr 6, 787-34
[28] Geyer T., Sarradj E., Giesler J., Hobracht M., (2011), Experimantal assessment of the noise generated at the leading edge porous airfoils using microphone array techniques, 17th Aeroacoustics Conference, 5-8 June 2011, Portland, Oregon
[29] Geyer T., Sarradj E., Fritzsche C., (2010) Measurement of the noise generation at the trailing edge of porous airfoils, Experiments in Fluids, 48: 291-308
[30] Geyer T., Sarradj E., (2007), Noise generation by porous airfoils, In: 13th AIAA/CEAS Aeroacoustics Conference, AIAA 2007-3719
[31] Geyer T., Sarradaj E., Fritzsche C., (2012), Silent Owl Flight: acoustic wind tunnel measurements on prepared winds, 18th AIAA/CEAS Aeroacoustics Conference, 4-6 June, Colorado Springs, CO
[32] Geyer T., Sarradj E., Fritzsche C., (2009), Silent owl flight. Experiments in the aeroacoustic wind tunnel, 35. Jahrestagung für Akustic (DAGAS 2009)
[33] Howe M.S., (1991) Aerodynamic noise of a serrated trailing edge. Journal of Fluids and Structures, 5(1), pp. 33–45
[34] Howe M.S., (1991) Noise produced by a sawtooth trailing edge. The Journal of the Acoustical Society of America, 90, pp. 482
[35] Howe M.S., (1998), Acoustics of fluid structure interactions. Cambridge University Press, New York
[36] Dassen A.G.M., Parchen R., Bruggeman J. and Hagg F., (1996), Results of a wind tunnel study on the reduction of airfoil self-noise by the application of serrated blade trailing edges. In Proc. of the European Union Wind Energy Conference and Exhibition, Göteborg, pp. 800–803
[37] Parchen R., Hoffmans W., Gordner A., and Braun K., (1999), Reduction of airfoil self-noise at low Mach number with a serrated trailing edge. In International Congress on Sound and Vibration, 6 th, Technical Univ. of Denmark, Lyngby, Denmark, pp. 3433–3440
[38] Oerlemans S., Fisher M, Maeder T., and Kögler K., (2009), Reduction of wind turbine noise using optimized airfoils and trailing"edge serrations. AIAA journal, 47, pp. 1470–1481
[39] Gruber M., Joseph P., and Chong T.P., (2010), Experimental investigation of airfoil self noise and turbulent wake reduction by the use of trailing edge serrations. In 16th AIAA/CEAS Aeroacoustics Conference
[40] Gruber M., Joseph P., Chong T. P., (2011), On the mechanisms of serrated airfoil trailing edge noise reduction, 17th AIAA/CEAS Aeroacoustics Conference, 5-8 June 2011, Portland, Oregon
[41] Gruber M., Azarpeyvand M., Joseph P., (2011a), Airfoil trailing edge noise reduction by the introduction of sawtooth and slitted trailing edge geometries, Proceedings of 20th International Congress on Acoustics, 23-27 August, Sydney, Australia
[42] Gruber M., Joseph P., Chong T. P., (2012), On the airfoil self-noise reduction by trailing edge serrations of non-insertion type, 18th AIAA/CEAS Aeroacoustics Conference, 4-6 June 2012, Colorado Springs, CO
[43] Moreau D. J., Tetlow M. R., Brooks L. A., Doolan C. J., (2010), Acoustic analysis of flat plate trailing edge noise, ICA 2010, Proceedings of 20th International Congress on Acoustics, 23-27 August, Sydney, Australia
[44] Moreau D. J., Brooks L. A., Doolan C. J., (2012), On the noise reduction mechanism of a flat plate serrated trailing edge at low-to-moderate Reynolds number, 18th AIAA/CEAS Aeroacoustics Conference, 4-8 June, Colorado Springs, CO
[45] Soderman P.T., (1972), Aerodynamic effects of leading-edge serrations on a two-dimensional airfoil, NASA TM X-2643
[46] Soderman P. T., (1973) Leading-edge serrations which reduce the noise of low-speed rotors, NASA TN DO7371
[47] Smith E.G., Sowers H. D., (1974), Cascade test of serrated leading edge blading at high subsonic speeds, NASA CR-2472
[48] Cheng L., (1989), Test Research for Rhizoma Soft Blade to the Effect of Noise and Performance. Compresor Blower & Fan Technology, Mar
[49] Soderman P.T., (1972), Aerodynamic effects of leading-edge serrations on a two-dimensional airfoil, NASA TM X-2643
[50] Ren L., Sun s., Xu Ch., (2008), Noise reduction mechanism of non-smooth leading edge of owl wing, Journal of Jilin University (Engineering and Technology Edition), 2008-S1-029
[51] Lian G., Wang J., Chen Y., Zhou Ch., Liang J., Ren L., (2010) The study of owl’s silent flight and noise reduction on fan vane with bionic structure, Advances in Natural Science, p. 192, v. 3, n. 2
[53] Guidati G., Ostertag S., and Wagner S., (2000), Prediction and Reduction of Wind Turbine Noise: An Overview of Research Activities in Europe, ASME Wind Energy Symposium, 19th, Aerospace Sciences Meeting and Exhibit, 38th, , Reno, Nevada, 10-13 January, pp 219 – 229
[54] Kopania J., Kaczyński R., Selected aspects of automation in fan examinations on standardized test stand, Heating, Ventilation and Air Conditioning, SIGMA-NOT, 2010, 42/2, 76-81
[55] Chen K., Liu Q,Liao Q., Yang Y., Ren L., Yang H., Chen X., The Sound Suppression Characteristics of Wing Feather of Owl (Bubo bubo), Journal of bionics engineering, 9, 2012, 192-199
[56] Cieślak M., Rojek M., Cichy lot sów inspiracją do redukcji aerodynamicznego hałasu lotniczego, Prace Instytutu Lotnictwa, 229, 55-110, 2013
[57] Ito S., (2009) Aerodynamic influence of leading-edge serrations on an airfoils in a low Reynolds number, Journal of Biomechanical Science and Engineering, 4, 117-123
[58] Kopania J., Kryłłowicz W., The aeroacoustics studies of the flat plates with the trailing edge modifications, XX Polish Fluid Mechanics Conference, Gliwice, 17-20 September 2012
[59] Jaworski J. W., Peake N., Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls, J. Fluid Mech., vol.723, 456479, 2013
[60] Brooks T. F., Marcolini M.A., Scaling of airfoil self-noise using measured flow parameters., AIAA Journal, 23(2), 207-213, 1985
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-babb8e20-880a-42b3-add1-ecb2dda39449