Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-b9acd5ca-79d5-488c-8ca2-755eb6229fdb

Czasopismo

Zeszyty Naukowe Akademii Morskiej w Szczecinie

Tytuł artykułu

Hydrodynamic performance of the horizontal axis tidal stream turbine using RANS solver

Autorzy Ghassemi, H.  Ghafari, H.  Homayoun, E. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN This current work investigates the effect of duct and number of blades on the hydrodynamic performance of the horizontal axis tidal stream turbine (HATST). The numerical method based on Reynolds averaged Navier-Stokes (RANS) equations is employed to compare the hydrodynamic performance for various cases of this device. For validation of the numerical results, a 3-blade HATST without-duct has been compared against experimental data. The analysis and comparison of the simulation results show that using duct for HATST has increased the power coefficient, the torque coefficient, the trust coefficient, and the force on the blade. In addition, the simulation results of the cases with a greater number of blades shows that the trust coefficient increased and the force on the blade decreased. Therefore, it is recommended to use ducted HATST with a great number of blades to extract more energy from the tidal stream.
Słowa kluczowe
EN tidal turbine   duct   number of blades   pressure   hydrodynamic performance   HATST  
Wydawca Wydawnictwo Naukowe Akademii Morskiej w Szczecinie
Czasopismo Zeszyty Naukowe Akademii Morskiej w Szczecinie
Rocznik 2018
Tom nr 55 (127)
Strony 23--33
Opis fizyczny Bibliogr. 20 poz., rys., tab.
Twórcy
autor Ghassemi, H.
autor Ghafari, H.
autor Homayoun, E.
Bibliografia
1. Chen, H. & Zhou, D. (2014) Hydrodynamic numerical simulation of diffuser for horizontal axis marine current turbine based on CFD. IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 062001.
2. Goundar, J.N. & Ahmed, M.R. (2013) Design of a horizontal axis tidal current turbine. Applied Energy 111, pp. 161–174.
3. Hee Jo, C., Young Yim, J., Hee Lee, K. & Ho Rho, Y. (2012) Performance of horizontal axis tidal current turbine by blade configuration. Renewable Energy 42, pp. 195–206.
4. Jones, W. & Launder, B.E. (1972) The prediction of laminarization with a two-equation model of turbulence. International journal of heat and mass transfer 15 (2), pp. 301–314.
5. Jung, H., Kanemoto, T. & Liu, P. (2017) A Numerical Prediction of Tip Vortices from Tandem Propellers in the Counter-Rotating Type Tidal Stream Power Unit. Journal of Power and Energy Engineering 5 (12), p. 66.
6. Mason-Jones, A., O’doherty, D., Morris, C., O’doherty, T., Byrne, C., Prickett, P., Grosvenor, R., Owen, I., Tedds, S. & Poole, R. (2012) Non-dimensional scaling of tidal stream turbines. Energy 44 (1), pp. 820–829.
7. Menter, F.R. (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32 (8), pp. 1598–1605.
8. Noruzi, R., Vahidzadeh, M. & Riasi, A. (2015) Design, analysis and predicting hydrokinetic performance of a horizontal marine current axial turbine by consideration of turbine installation depth. Ocean Engineering 108, pp. 789– 798.
9. Pope, S.B. (2001) Turbulent flows. IOP Publishing.
10. Ren, Y., Liu, B., Zhang, T. & Fang, Q. (2017) Design and hydrodynamic analysis of horizontal axis tidal stream turbines with winglets. Ocean Engineering 144, pp. 374–383.
11. Rourke, F.O., Boyle, F. & Reynolds, A. (2010) Tidal energy update 2009. Applied Energy 87 (2), pp. 398–409.
12. Shahsavarifard, M., Bibeau, E.L. & Chatoorgoon, V. (2015) Effect of shroud on the performance of horizontal axis hydrokinetic turbines. Ocean Engineering 96, pp. 215– 225.
13. Shi, W., Atlar, M., Rosli, R., Aktas, B. & Norman, R. (2016) Cavitation observations and noise measurements of horizontal axis tidal turbines with biomimetic blade leading-edge designs. Ocean Engineering 121, pp. 143–155.
14. Shives, M. & Crawford, C. (2012) Developing an empirical model for ducted tidal turbine performance using numerical simulation results. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 226 (1), pp. 112–125.
15. Song, M., Kim, M.-C., Do, I.-R., Rhee, S.H., Lee, J.H. & Hyun, B.-S. (2012) Numerical and experimental investigation on the performance of three newly designed 100 kWclass tidal current turbines. International Journal of Naval Architecture and Ocean Engineering 4 (3), pp. 241–255.
16. Sun, H. & Kyozuka, Y. (2012) Experimental validation and numerical simulation evaluation of a shrouded tidal current turbine. Journal of the Japan Society of Naval Architects and Ocean Engineers 16, pp. 25–32.
17. Tampier, G., Troncoso, C. & Zilic, F. (2017) Numerical analysis of a diffuser-augmented hydrokinetic turbine. Ocean Engineering 145, pp. 138–147.
18. TurboGrid (2016) ANSYS, TurboGrid, 16.2 ed.
19. Wang, S.-H. & Chen, S.-H. (2008) Blade number effect for a ducted wind turbine. Journal of mechanical science and technology 22 (10), pp. 1984–1992.
20. Wilcox, D.C. (1998) Turbulence modeling for CFD. DCW industries La Canada, CA.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-b9acd5ca-79d5-488c-8ca2-755eb6229fdb
Identyfikatory
DOI 10.17402/298