Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of benzotriazole by Photo-Fenton like process using nano zero-valent iron: response surface methodology with a Box-Behnken design

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this paper, the removal of benzotriazole (BTA) was investigated by a Photo-Fenton process using nano zero valent iron (NZVI) and optimization by response surface methodology based on Box-Behnken method. Effect of operating parameters affecting removal efficiency such as H2O2, NZVI, and BTA concentrations as well as pH was studied. All the experiments were performed in the presence of ultraviolet radiation. Predicted levels and BTA removal were found to be in good agreement with the experimental levels (R2 = 0. 9500). The optimal parameters were determined at 60 min reaction time, 15 mg L-1 BTA, 0.10 g L-1 NZVI, and 1.5 mmol L-1 H2O2  for Photo-Fenton-like reaction. NZVI was characterized using X-ray diffraction (XRD), transmission electron microscope (TEM) images, and scanning electron microscope (SEM) analysis.
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
  • Jundishapur University of Medical Sciences, Department of Environmental Health Engineering, School of Public Health, Ahvaz, Ahvaz, Iran
  • Ahvaz Jundishapur University of Medical Sciences, Department of Environmental Health Engineering, Ahvaz, Iran
  • Ardabil University of Medical Sciences, Department of Environmental Health Engineering, Ardabil, Iran
  • Semnan University of Medical Sciences, Department of Environmental Health Engineering, Semnan, Iran
  • Jundishapur University of Medical Sciences, Department of Environmental Health Engineering, School of Public Health, Ahvaz, Ahvaz, Iran
  • Ahvaz Jundishapur University of Medical Sciences, Department of Environmental Health Engineering, Ahvaz, Iran
  • Kashan University of Medical Sciences, Department of Environmental Health Engineering, Kashan, Iran
  • 1. Castro, S., Davis, L.C. & Erickson, L.E. (2005). Natural, cost-effective, and sustainable alternatives for treatment of aircraft deicing fluid waste. Environ. Prog. 24(1), 26-33. DOI: 10.1002/ep.10059.
  • 2. Weiss, S.J., Jakobs, L.E. & Reemtsma, T. (2006). Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation. Environ. Sci. Technol. 40(23), 7193-7199. DOI: 10.1021/es061434i.
  • 3. Giger, W., Schaffner, C. & Kohler, H.-P.E. (2006). Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes. Environ. Sci. Technol. 40(23), 7186-7192. DOI: 10.1021/es061565j.
  • 4. Alotaibi, M., et al. (2015). Benzotriazoles in the aquatic environment: a review of their occurrence, toxicity, degradation and analysis. Water, Air & Soil Pollution. 226(7), 1-20. DOI: 10.1007/s11270-015-2469-4.
  • 5. Oller, I., Malato, S. & Sánchez-Pérez, J. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci. Total Environ. 409(20), 4141-4166. DOI: 10.1016/j.scitotenv.2010.08.061.
  • 6. Dimoglo, A., et al. (2004). Petrochemical wastewater treatment by means of clean electrochemical technologies. Clean Technol Envir. 6(4), 288-295. DOI: 10.1007/s10098-004-0248-9.
  • 7. Chakinala, A.G. et al. (2009). Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chem. Eng. J. 152(2), 498-502. DOI: 10.1016/j.cej.2009.05.018.
  • 8. Wang, Y., et al. (2014). Optimization of coagulation-flocculation process for papermaking-reconstituted tobacco slice wastewater treatment using response surface methodology. J. Ind. Eng. Chem. 20(2), 391-396. DOI: 10.1016/j.jiec.2013.04.033.
  • 9. Nachiappan, S. & Muthukumar, K. (2010). Intensification of textile effluent chemical oxygen demand reduction by innovative hybrid methods. Chem. Eng. J. 163(3), 344-354. DOI: 10.1016/j.cej.2010.08.013.
  • 10. Tekin, H., et al. (2006). Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J. Hazard. Mater. 136(2), 258-265. DOI: 10.1016/j.jhazmat.2005.12.012.
  • 11. Farzadkia, M., et al. (2014). Investigation of photocatalytic degradation of clindamycin antibiotic by using nano-ZnO catalysts. Korean J. Chem. Eng. 31(11), 2014-2019. DOI: 10.1007/s11814-014-0119-y.
  • 12. Hem, L.J., et al. (2003). Photochemical degradation of benzotriazole. J. Environ. Sci. Health, Part A. 38(3), 471-481. DOI: 10.1081/ESE-120016907.
  • 13. Xu, B., et al. (2010). Benzotriazole removal from water by Zn-Al-O binary metal oxide adsorbent: Behavior, kinetics and mechanism. J. Hazard Mater. 184(1), 147-155. DOI: 10.1016/j.jhazmat.2010.08.017.
  • 14. Yang, B., et al. (2011). Kinetics modeling and reaction mechanism of ferrate (VI) oxidation of benzotriazoles. Water Res. 45(6), 2261-2269. DOI: 10.1016/j.watres.2011.01.022.
  • 15. Zúñiga-Benítez, H., Soltan, J. & Peñuela, G. (2014). Ultrasonic degradation of 1-H-benzotriazole in water. Water Sci. Technol. 70(1), 152-159. DOI: 10.2166/wst.2014.210.
  • 16. Bahnmüller, S., et al. (2015). Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H 2 O 2. Water Res. 74, 143-154. DOI: 10.1016/j.watres.2014.12.039.
  • 17. Crane, R. & Scott, T. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J. Hazard. Mater. 211, 112-125. DOI: 10.1016/j. jhazmat.2011.11.073.
  • 18. Fu, F., Dionysiou, D.D. & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J. Hazard. Mater. 267, 194-205. DOI: 10.1016/j.jhazmat.2013.12.062.
  • 19. Chen, H., et al. (2016). Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water. Chemosphere. 146, 32-39. DOI: 10.1016/j.chemosphere.2015.11.095.
  • 20. Zhang, J., et al. (2011). 3-aminopropyltriethoxysilane functionalized nanoscale zero-valent iron for the removal of dyes from aqueous solution. Pol. J. Chem. Technol. 13(2), 35-39. DOI: 10.2478/v10026-011-0021-x.
  • 21. Pradhan, A.A. & Gogate, P.R. (2010). Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry. J. Hazard. Mater. 173(1), 517-522. DOI: 10.1016/j. jhazmat.2009.08.115.
  • 22. Wang, S. (2008). A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm. 76(3), 714-720. DOI: 10.1016/j.dyepig.2007.01.012.
  • 23. Jiang, C., et al. (2010). A new insight into Fenton and Fenton-like processes for water treatment. J. Hazard. Mater. 174(1-3), 813-817. DOI: 10.1016/j.jhazmat.2009.09.125.
  • 24. Weng, C.H., et al. (2013). Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst. Ultrason. Sonochem. 20(3), 970-977. DOI: 10.1016/j.ultsonch.2012.09.014.
  • 25. O’Rourke, N., Psych, R. & Hatcher, L. (2013). A step-by-step approach to using SAS for factor analysis and structural equation modeling. Sas Institute.
  • 26. Tripathi, P., Srivastava, V.C. & Kumar, A. (2009). Optimization of an azo dye batch adsorption parameters using Box-Behnken design. Desalination 249(3), 1273-1279. DOI: 10.1016/j.desal.2009.03.010.
  • 27. Khataee, A.R., Zarei, M. & Moradkhannejhad, L. (2010). Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode. Desalination 258(1-3), 112-119. DOI: 10.1016/j.desal.2010.03.028.
  • 28. Rahmani, H., et al. (2014). Tinidazole Removal from Aqueous Solution by Sonolysis in the Presence of Hydrogen Peroxide. Bull. Environ. Contam. Toxicol. 92(3), 341-346. DOI: 10.1007/s00128-013-1193-2.
  • 29. Lucas, M.S. & Peres, J.A. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes Pigm. 71(3), 236-244. DOI: 10.1016/j.dyepig.2005.07.007.
  • 30. Ahmadi Moghaddam, M., et al. (2010). Degradation of 2, 4-dinitrophenol by photo fenton process. Asian J. Chem. 22(2), 1009-1016.
  • 31. Chan, K. & Chu, W. (2003). Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere. 51(4), 305-311. DOI: 10.1016/S0045-6535(02)00812-3.
  • 32. Hermosilla, D., Cortijo, M. & Huang, C. (2009). The role of iron on the degradation and mineralization of organic compounds using conventional Fenton and photo-Fenton processes. Chem. Eng. J. 155(3), 637-646. DOI: 10.1016/j. cej.2009.08.020.
  • 33. Cavalcante, R.P., et al. (2013). Application of Fenton, photo-Fenton, solar photo-Fenton, and UV/H2O2 to degradation of the antineoplastic agent mitoxantrone and toxicological evaluation. Environ. Sci. Poll. Res. 20(4), 2352-2361. DOI: 10.1007/s11356-012-1110-y.
  • 34. Keenan, C.R. & Sedlak, D.L. (2008). Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 42(4), 1262-1267. DOI: 10.1021/es7025664.
  • 35. Lee, C., Keenan, C.R. & Sedlak, D.L. (2008). Polyoxometalate- enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 42(13), 4921-4926. DOI.
  • 36. Lee, C. & Sedlak, D.L. (2008). Enhanced formation of oxidants from bimetallic nickel− iron nanoparticles in the presence of oxygen. Environ. Sci. Technol. 42(22), 8528-8533. DOI: 10.1021/es801947h.
  • 37. Mert, B.K., et al. (2010). Pre-treatment studies on olive oil mill effl uent using physicochemical, Fenton and Fenton-like oxidations processes. J. Hazard. Mater. 174(1), 122-128. DOI: 10.1016/j.jhazmat.2009.09.025.
  • 38. Babuponnusami, A. & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Engineer. 2(1), 557-572. DOI: 10.1016/j.jece.2013.10.011.
  • 39. Xu, J., et al. (2013). Removal of benzotriazole from solution by BiOBr photocatalysis under simulated solar irradiation. Chem. Eng. J. 221, 230-237. DOI: 10.1016/j.cej.2013.01.081.
  • 40. Wu, J., et al. (2013). Removal of benzotriazole by heterogeneous photoelectro-Fenton like process using ZnFe2O4 nanoparticles as catalyst. J. Environ. Sci. 25(4), 801-807. DOI: 10.1016/S1001-0742(12)60117-X.
  • 41. Ahmadi, M., Ghanbari, F. & Madihi-Bidgoli, S. (2016). Photoperoxi-coagulation using activated carbon fiber cathode as an efficient method for benzotriazole removal from aqueous solutions: Modeling, optimization and mechanism. J. Photochem. Photobiol. A: Chemistry 322, 85-94. DOI: 10.1016/j. jphotochem.2016.02.025.
  • 42. Ding, Y., et al. (2010). Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. J. Hazard. Mater. 175(1), 96-103. DOI: 10.1016/j. jhazmat.2009.09.037.
  • 43. Zhang, Y., et al. (2016). Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO 2: Combination of adsorption and catalysis oxidation. Appl. Catal. B: Environmental 199, 447-457. DOI: 10.1016/j.apcatb.2016.06.003.
  • 44. Borowska, E., Felis, E. & Kalka, J. (2016). Oxidation of benzotriazole and benzothiazole in photochemical processes: Kinetics and formation of transformation products. Chem. Eng. J. 304, 852-863. DOI: 10.1016/j.cej.2016.06.123.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.