Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary results of DCB C1-C2 in a GPS system

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper present the results of studies related to estimation of instrumental biases C1-C2 in a GPS system. The data from LAMA and WROC reference stations in Poland were used in numerical processing, using the least squares method in SciTEC software. The Differential Code Biases C1-C2 were determined based on the Geometry Free linear combination with temporal resolution of 2 hours, separately for each station. The first results of the DCB C1-C2 were compared with theoretical values based on monthly CODE’s product. Moreover, the theoretical values of SDCB C1-C2 include many anomalies and the reference sum of SDCB C1-C2 is not equal to 0. The standard deviation of the mean difference between CODE and each station is about ±3 ns. The magnitude order of SDCB C1-C2 for each station for each day is less than ±10 ns with the standard deviation less than ±0.5 ns. The average values of SDCB C1-C2 for each station were determined based on a RINEX file from 6 measurements days. The SDCB C1-C2 from each station have got similar trends, except to the bias of SVN1, where the difference is more than 2 ns. Generally, the mean difference of SDCB C1-C2 between the LAMA and WROC solution is about ±1 ns. The RDCB C1-C2 are more stable than the SDCB C1-C2, with a daily repeatability about 0.7 ns. The characteristic of RDCB C1-C2 for each station over a few days is very irregular, with the range of about ±1.5 ns.
Słowa kluczowe
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., wzory
  • Zespół Technik Satelitarnych, 08-530 Dęblin, 16 Zawiszy Czarnego St.
  • Starostwo Powiatowe w Rykach, Wydział Geodezji, Kartografii I Katastru Nieruchomości, 08-500 Ryki, 10A Wyczółkowskiego St.
  • [1] Arikan F., Nayir H., Sezen U., Arikan O.: Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Science 43, RS4004,2008, doi:10.1029/2007RS003785.
  • [2] Camargo P., Monico J. F. G., Ferreira L. D. D.: Application of ionospheric corrections in the equatorial region for L1 GPS users, Earth Planet Space 52, 2000, pp.1083-1089.
  • [3] Choi B. K., Cho J. H., Lee S. J.: Estimation and analysis of GPS receiver differential code biases using KGN in Korean Peninsula. Advances in Space Research 47, 2011, pp. 1590–1599.
  • [4] Choi K. H., Lee J. Y., Kim H. S., Kim J., Lee H. K.: Simultaneous estimation of Ionospheric delays and receiver differential code bias by a single GPS station. , Measurement Science and Technology 23, 2012, pp. 1-11, doi:10.1088/0957-0233/23/6/065002.
  • [5] Choi B.K., Park J. U., Roh K. M., Lee S. J.: Comparison of GPS receiver DCB estimation methods using a GPS network. Earth Planets Space, 65, 2013, pp. 707–711.
  • [6] Coco D. S., Coker C., Dahlke S. R., Clynch J.R.: Variability of GPS Satellite Differential Group Delay Biases. IEEE Trans. on Aerospace and Electronic Systems 27, 6, 1991, 931-938.
  • [7] Dach R., Hugentobler U., Fridez P., Meindl M.: Bernese GPS Software Version 5.0., Astronomical Institute, University of Bern, Switzerland, 2007.
  • [8] Feltens J., Dow J. M.: Realized and planned improvements in ESA/ESOC ionosphere modeling. In: Paper presented at IGS Workshop, Darmstadt, 2006.
  • [9] Ghoddousi-Fard R.: DCB Estimation at NRCan: Status and Future Plans. Workshop on GNSS Biases, Bern, Switzerland, 2012.
  • [10] Grejner-Brzezinska D. A., Wielgosz P, Kashani I., Smith D. A., Spencer P. S. J., Robertson D. S., Mader G. L.: An analysis of the effects of different network-based ionosphere estimation models on rover positioning accuracy. Presented at GNSS 2004, The 2004 International Symposium on GNSS/GPS, Sydney, Australia, 2004.
  • [11] Hernández-Pajares M., Juan J. M., Sanz J., Sol J. G.: Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data. Journal of Geophysical Research 103(A9), pp. 20789–20796, 1998, doi:10.1029/98JA01272.
  • [12] Hong C. K.: Efficient Differential Code Bias and Ionosphere Modeling and their Impact on the Network-based gps Positioning. Dissertation Thesis, The Ohio State University, 2007.
  • [13] Hong C. K., Grejner-Brzezinska D. A., Kwon J. H.: Efficient GPS receiver DCB estimation for ionosphere modeling using satellite-receiver geometry changes, Earth Planets Space 60, pp. 25–28, 2008.
  • [14] Jin R., Jin S., Feng G.: M_DCB: Matlab code for estimating GNSS satellite and receiver differential code Biases. GPS Solutions 16, 4, pp. 541-548, 2012, DOI 10.1007/s10291-012-0279-3.
  • [15] Kao S. P., Chen Y. C., Ning F.S .: A MARS-based method for estimating regional 2-D ionospheric VTEC and receiver differential code bias. Advances in Space Research 53, pp. 190–200, 2013.
  • [16] Leandro R. F., Langley R. B., Santos M. C.: Estimation of P2-C2 Biases by Means of Precise Point Positioning. Paper presented at ION 63rd Annual Meeting, Cambridge, MA, 2007.
  • [17] Leandro R. F., Thirumurthi T., Sükeová L., Langley R.B., Santos M.C.: Analysis of GPS L2C Signal Quality and its Impact on PPP Performance. Paper presented at ION NTM 2008, San Diego, CA, 2008.
  • [18] Lin L.S.: Remote sensing of ionosphere using GPS measurements, Paper presented at the 22nd Asian Conference on Remote Sensing, 5–9 Nov., Singapore, 2001.
  • [19] Liu J., Chen R., Kuusniemi H., Wang Z., Zhang H., Yang J.: A preliminary study on mapping the Regional Ionospheric TEC using a spherical cap harmonic model in high latitudes and the Arctic region. Journal of Global Positioning Systems 9, 1, pp. 22-32, 2010, doi: 10.5081/jgps.9.1.22.
  • [20] Ma G., Maruyama T.: Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Annales Geophysicae 21, pp. 2083–2093, 2003.
  • [21] Montenbruck O., Hauschild A., Steigenberger P.: Differential Code Bias Estimation using Multi-GNSS Observations and Global Ionosphere Maps. Paper presented at ION ITM 2014, San Diego, USA, 2014.
  • [22] Nohutcu M.: Development of a MATLAB based software package for ionosphere modeling. Doctoral dissertation. The Middle East Technical University, Turkey, 2009.
  • [23] Øvstedal O.: Absolute positioning with single-frequency GPS receivers. GPS Solutions 5, 4, pp. 33–44, 2012, doi: 10.1007/ PL00012910.
  • [24] Santos M. C., van Bree R., van der Marel H., Verhagen S., Garcia C. A.: Experimental Assessment of a PPP-based P2-C2 bias estimation. Paper presented at IGS Workshop 2010, Newcastle, England, 2010.
  • [25] Sanz Subirana J., Hernández-Pajares M.: GNSS Data Processing Lab Exercises, ESA International Summer School on GNSS: Towards a Multi-Constellation Multi-Frequency GNSS and SBAS. Berchtesgaden, Germany, 2011.
  • [26] Sanz Subirana J., Zornoza J. M. J., Hernández-Pajares M.: GNSS Data Processing. Vol. I: Fundamentals and Algorithms, ESA TM-23/1, 2013.
  • [27] Schaer S., Gurtner W., Feltens J.: IONEX: The IONosphere Map EXchange Format Version 1. Proceedings of the IGS Analysis Centers Workshop, Darmstadt, Germany, pp. 233-247, 1997.
  • [28] Schaer S.: Mapping and predicting the earth’s ionosphere using global positioning system. Doctoral dissertation. Astronomy Institute, University Bern, Switzerland, 1999.
  • [29] Schaer S.: Differential Code Biases (DCB) in GNSS Analysis. Paper presented at IGS Workshop 2008, Miami Beach, USA, 2008.
  • [30] Schaer S., Dach R.: Biases in GNSS Analysis. Paper presented at IGS Workshop 2010, Newcastle, England, 2010.
  • [31] Schaer S.: Overview of GNSS biases, Paper presented at Workshop on GNSS Biases, Bern, Switzerland, 2012.
  • [32] Wang D.: Performance Evaluation of GPS L1/L2 Positioning with Partial Availability of the L2C Signals. Master Thesis. University of Calgary, 2010.
  • [33] Wielgosz P., Grejner-Brzezinska D. A., Kashani I.: Regional Ionosphere Mapping with Kriging and Multiquadric Method. Journal of Global Positioning Systems 2, 1, pp. 48-55, 2003.
  • [34] Wilson B. D., Mannucci A. J.: Instrumental biases in ionospheric measurement derived from GPS data. Paper presented at proceedings of the ION GPS-93, pp. 1343–1351, Salt Like City, UT, USA, 1993.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.