Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected Advances of Quantum Biophotonics : a Short Review

Treść / Zawartość
Warianty tytułu
Języki publikacji
This article discusses four fields of study with the potential to revolutionize our understanding and interaction with biological systems: quantum biophotonics, molecular and supramolecular bioelectronics, quantum-based approaches in gaming, and nano-biophotonics. Quantum biophotonics uses photonics, biochemistry, biophysics, and quantum information technologies to study biological systems at the sub-nanoscale level. Molecular and supramolecular bioelectronics aim to develop biosensors for medical diagnosis, environmental monitoring, and food safety by designing materials and devices that interface with biological systems at the molecular level. Quantum-based approaches in gaming improve modeling of complex systems, while nanomedicine enhances disease diagnosis, treatment, and prevention using nanoscale devices and sensors developed with quantum biophotonics. Lastly, nano-biophotonics studies cellular structures and functions with unprecedented resolution.
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
  • [1] “Introduction to the Quantum Flagship,” Quantum Flagship. (accessed May 18, 2023).
  • [2] “European Strategic Research and Industry Agenda.” 2022.
  • [3] “Biophotonics.” Photonics Media.
  • [4] K. Goda, “Biophotonics and beyond,” APL Photonics, vol. 4, no. 5, p. 050401, May 2019,
  • [5] B. Anvari, “Grand Challenges and Opportunities in Biophotonics,” Frontiers in Photonics, vol. 2, 2021,
  • [6] Y. J. Son et al., “Formation and Thermal Stability of Ordered Self-Assembled Monolayers by the Adsorption of Amide-Containing Alkanethiols on Au(111),” International Journal of Molecular Sciences, vol. 24, no. 4, Art. no. 4, Jan. 2023,
  • [7] X. Zhu, Z. Xu, X. Li, and C. Guo, “Charge migration of ferrocene-labeled peptide self-assembled monolayers at various interfaces: The roles of peptide composition,” Electrochimica Acta, vol. 454, p. 142419, Jun. 2023,
  • [8] S. Shahriari, M. Sastry, S. Panjikar, and R. S. Raman, “Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors,” NSA, vol. 14, pp. 197-220, Nov. 2021,
  • [9] G. Sedghi et al., “Single Molecule Conductance of Porphyrin Wires with Ultralow Attenuation,” J. Am. Chem. Soc., vol. 130, no. 27, pp. 8582-8583, Jul. 2008,
  • [10] P. Ambhorkar et al., “Nanowire-Based Biosensors: From Growth to Applications,” Micromachines, vol. 9, no. 12, Art. no. 12, Dec. 2018,
  • [11] F. Fu, J. Wang, H. Zeng, and J. Yu, “Functional Conductive Hydrogels for Bioelectronics,” ACS Materials Lett., vol. 2, no. 10, pp. 1287-1301, Oct. 2020,
  • [12] Q. Tian et al., “Highly Sensitive and Selective Dopamine Determination in Real Samples Using Au Nanoparticles Decorated Marimo-like Graphene Microbead-Based Electrochemical Sensors,” Sensors, vol. 23, no. 5, Art. no. 5, Jan. 2023,
  • [13] X. Luo et al., “Plasmonic Gold Nanohole Array for Surface-Enhanced Raman Scattering Detection of DNA Methylation,” ACS Sens., vol. 4, no. 6, pp. 1534-1542, Jun. 2019,
  • [14] C. Jin, Z. Wu, J. H. Molinski, J. Zhou, Y. Ren, and J. X. J. Zhang, “Plasmonic nanosensors for point-of-care biomarker detection,” Materials Today Bio, vol. 14, p. 100263, Mar. 2022,
  • [15] Y. Fang, L. Meng, A. Prominski, E. N. Schaumann, M. Seebald, and B. Tian, “Recent advances in bioelectronics chemistry,” Chem. Soc. Rev., vol. 49, no. 22, pp. 7978-8035, Nov. 2020,
  • [16] M. Schubert, A. Drachen, and T. Mahlmann, “Esports Analytics Through Encounter Detection,” 2016.
  • [17] A. P. Afonso, M. B. Carmo, and T. Moucho, “Comparison of Visualization Tools for Matches Analysis of a MOBA Game,” in 2019 23rd International Conference Information Visualisation (IV), Jul. 2019, pp. 118-126.
  • [18] P. Xenopoulos, J. Rulff, and C. Silva, “ggViz: Accelerating Large-Scale Esports Game Analysis,” Proc. ACM Hum.-Comput. Interact., vol. 6, no. CHI PLAY, p. 238:1-238:22, Oct. 2022,
  • [19] P. Xenopoulos, W. R. Freeman, and C. Silva, “Analyzing the Differences between Professional and Amateur Esports through Win Probability,” in Proceedings of the ACM Web Conference 2022, in WWW ’22. New York, NY, USA: Association for Computing Machinery, Apr. 2022, pp. 3418-3427.
  • [20] P. Xenopoulos, H. Doraiswamy, and C. Silva, “Valuing Player Actions in Counter-Strike: Global Offensive,” in 2020 IEEE International Conference on Big Data (Big Data), Dec. 2020, pp. 1283-1292.
  • [21] M. Schuld and F. Petruccione, “Quantum Machine Learning,” in Encyclopedia of Machine Learning and Data Mining, C. Sammut and G. I. Webb, Eds., Boston, MA: Springer US, 2017, pp. 1034-1043.
  • [22] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into Deep Learning.” arXiv, Feb. 10, 2023.
  • [23] A. Jadhav, A. Rasool, and M. Gyanchandani, “Quantum Machine Learning: Scope for real-world problems,” Procedia Computer Science, vol. 218, pp. 2612-2625, Jan. 2023,
  • [24] A. Białecki, R. Białecki, and J. Gajewski, “Redefining Sports: Esports, Environments, Signals and Functions,” International Journal of Electronics and Telecommunications, vol. 68, pp. 541-548, Aug. 2022,
  • [25] P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nature Nanotech, vol. 7, no. 6, Art. no. 6, Jun. 2012,
  • [26] H. T. Ngo, H.-N. Wang, A. M. Fales, and T. Vo-Dinh, “Plasmonic SERS biosensing nanochips for DNA detection,” Anal Bioanal Chem, vol. 408, no. 7, pp. 1773-1781, Mar. 2016,
  • [27] H. Altug, S.-H. Oh, S. A. Maier, and J. Homola, “Advances and applications of nanophotonic biosensors,” Nat. Nanotechnol., vol. 17, no. 1, Art. no. 1, Jan. 2022,
  • [28] A. B. González-Guerrero, S. Dante, D. Duval, J. Osmond, and L. M. Lechuga, “Advanced photonic biosensors for point-of-care diagnostics,” Procedia Engineering, vol. 25, pp. 71-75, Jan. 2011,
  • [29] G. Ruiz-Vega, M. Soler, and L. M. Lechuga, “Nanophotonic biosensors for point-of-care COVID-19 diagnostics and coronavirus surveillance,” J. Phys. Photonics, vol. 3, no. 1, p. 011002, Jan. 2021,
  • [30] K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal Bioanal Chem, vol. 387, no. 5, pp. 1831-1840, Mar. 2007,
  • [31] M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express, OE, vol. 21, no. 26, pp. 32086-32098, Dec. 2013,
  • [32] F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett., vol. 8, no. 11, pp. 3983-3988, Nov. 2008,
  • [33] A. Sinibaldi, “Cancer Biomarker Detection With Photonic Crystals-Based Biosensors: An Overview,” Journal of Lightwave Technology, vol. 39, no. 12, pp. 3871-3881, Jun. 2021,
  • [34] F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat Methods, vol. 5, no. 7, Art. no. 7, Jul. 2008,
  • [35] I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nature Mater, vol. 4, no. 6, Art. no. 6, Jun. 2005,
  • [36] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc., vol. 128, no. 6, pp. 2115-2120, Feb. 2006,
  • [37] M. Smit et al., “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol., vol. 29, no. 8, p. 083001, Jun. 2014,
  • [38] T. Pan, D. Lu, H. Xin, and B. Li, “Biophotonic probes for bio-detection and imaging,” Light Sci Appl, vol. 10, no. 1, Art. no. 1, Jun. 2021,
  • [39] J. Tafur and P. J. Mills, “Low-intensity light therapy: exploring the role of redox mechanisms,” Photomed Laser Surg, vol. 26, no. 4, pp. 323-328, Aug. 2008,
  • [40] T. J. Dougherty et al., “Photodynamic Therapy,” Journal of the National Cancer Institute, vol. 90, no. 12, 1998.
  • [41] N. Toropov, G. Cabello, M. P. Serrano, R. R. Gutha, M. Rafti, and F. Vollmer, “Review of biosensing with whispering-gallery mode lasers,” Light Sci Appl, vol. 10, no. 1, Art. no. 1, Feb. 2021,
  • [42] F. M. Winnik and D. Maysinger, “Quantum Dot Cytotoxicity and Ways To Reduce It,” Acc. Chem. Res., vol. 46, no. 3, pp. 672-680, Mar. 2013,
  • [43] F. Erogbogbo, K.-T. Yong, I. Roy, G. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible Luminescent Silicon Quantum Dots for Imaging of Cancer Cells,” ACS Nano, vol. 2, no. 5, pp. 873-878, May 2008,
  • [44] E. Campbell et al., “Graphene quantum dot formulation for cancer imaging and redox-based drug delivery,” Nanomedicine: Nanotechnology, Biology and Medicine, vol. 37, p. 102408, Oct. 2021,
  • [45] S. Zhao et al., “Single photon emission from graphene quantum dots at room temperature,” Nat Commun, vol. 9, no. 1, Art. no. 1, Aug. 2018,
  • [46] M. Zhang et al., “Spider Silk as a Flexible Light Waveguide for Temperature Sensing,” Journal of Lightwave Technology, vol. 41, no. 6, pp. 1884-1889, Mar. 2023,
  • [47] B. Apter, N. Lapshina, A. Handelman, and G. Rosenman, “Light waveguiding in bioinspired peptide nanostructures,” Journal of Peptide Science, vol. 25, no. 5, p. e3164, 2019,
  • [48] N. H. T. Tran, K. T. L. Trinh, J.-H. Lee, W. J. Yoon, and H. Ju, “Reproducible Enhancement of Fluorescence by Bimetal Mediated Surface Plasmon Coupled Emission for Highly Sensitive Quantitative Diagnosis of Double-Stranded DNA,” Small, vol. 14, no. 32, p. 1801385, 2018,
  • [49] J. R. Lakowicz et al., “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst, vol. 133, no. 10, pp. 1308-1346, Sep. 2008,
  • [50] J.-F. Li, C.-Y. Li, and R. F. Aroca, “Plasmon-enhanced fluorescence spectroscopy,” Chem. Soc. Rev., vol. 46, no. 13, pp. 3962-3979, Jul. 2017,
  • [51] A. Minopoli et al., “Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood,” Nat Commun, vol. 11, no. 1, Art. no. 1, Dec. 2020,
  • [52] H. Yu, Y. Peng, Y. Yang, and Z.-Y. Li, “Plasmon-enhanced light-matter interactions and applications,” npj Comput Mater, vol. 5, no. 1, Art. no. 1, Apr. 2019,
  • [53] U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, and T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proceedings of the National Academy of Sciences, vol. 105, no. 48, pp. 18982-18987, Dec. 2008,
  • [54] V. V. G. K. Inavalli et al., “A super-resolution platform for correlative live single-molecule imaging and STED microscopy,” Nat Methods, vol. 16, no. 12, Art. no. 12, Dec. 2019,
  • [55] P.-Y. Lin, Y.-C. Lin, C.-S. Chang, and F.-J. Kao, “Fluorescence Lifetime Imaging Microscopy with Subdiffraction-Limited Resolution,” Jpn. J. Appl. Phys., vol. 52, no. 2R, p. 028004, Jan. 2013,
  • [56] H. Tian, A. Fürstenberg, and T. Huber, “Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics,” Chem. Rev., vol. 117, no. 1, pp. 186-245, Jan. 2017,
  • [57] H. E. Grecco and P. J. Verveer, “FRET in Cell Biology: Still Shining in the Age of Super-Resolution?,” ChemPhysChem, vol. 12, no. 3, pp. 484-490, 2011,
  • [58] M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proceedings of the National Academy of Sciences, vol. 102, no. 37, pp. 13081-13086, Sep. 2005,
  • [59] A. Westphal, H. Sielaff, S. Reuter, T. Heitkamp, R. Mrowka, and M. Börsch, “Ligand-induced oligomerization of the human GPCR neurotensin receptor 1 monitored in living HEK293T cells,” in Multiphoton Microscopy in the Biomedical Sciences XIX, SPIE, Feb. 2019, pp. 95107.
  • [60] Y. Liu et al., “Responsive Carbonized Polymer Dots for Optical Super-resolution and Fluorescence Lifetime Imaging of Nucleic Acids in Living Cells,” ACS Appl. Mater. Interfaces, vol. 13, no. 43, pp. 50733-50743, Nov. 2021,
  • [61] S. Ni et al., “Chemical Modifications of Nucleic Acid Aptamers for Therapeutic Purposes,” International Journal of Molecular Sciences, vol. 18, no. 8, Art. no. 8, Aug. 2017,
  • [62] V. Gradinaru et al., “Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo,” J. Neurosci., vol. 27, no. 52, pp. 14231-14238, Dec. 2007,
  • [63] E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat Neurosci, vol. 8, no. 9, Art. no. 9, Sep. 2005,
  • [64] A. Levskaya, O. D. Weiner, W. A. Lim, and C. A. Voigt, “Spatiotemporal control of cell signalling using a light-switchable protein interaction,” Nature, vol. 461, no. 7266, Art. no. 7266, Oct. 2009,
  • [65] J. E. Toettcher, O. D. Weiner, and W. A. Lim, “Using Optogenetics to Interrogate the Dynamic Control of Signal Transmission by the Ras/Erk Module,” Cell, vol. 155, no. 6, pp. 1422-1434, Dec. 2013,
  • [66] M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photon, vol. 5, no. 6, Art. no. 6, Jun. 2011,
  • [67] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon, vol. 3, no. 11, Art. no. 11, Nov. 2009,
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.