Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button


Physicochemical Problems of Mineral Processing

Tytuł artykułu

Assessment of classification with variable air flow for inertial classifier in dry grinding circuit with electromagnetic mill using partition curves

Autorzy Wolosiewicz-Glab, M.  Ogonowski, S.  Foszcz, D.  Gawenda, T. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In classification one of the methods used to evaluate the effectiveness of classifier’s work is to create the partition curve, which determines the size of the classified particles and characterizes the accuracy of the process. The article presents the results of experiments showing the efficiency of classification in the inertial classifier, designed specifically for the electromagnetic mill. The paper presents the results of tests in order to determine the possibility of controlling the classification by changing the transport air stream flow. In order to verify and assess the classifier work, a series of experiments with different opening level of additional air damper was performed. The results allow thorough assessment of the effectiveness and efficiency of the device and facilitate the optimization of the grinding process by establishing an appropriate control algorithm as well as the air flow in classifier.
Słowa kluczowe
EN electromagnetic mill   grinding   classification   materials processing   partition curves  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Physicochemical Problems of Mineral Processing
Rocznik 2018
Tom Vol. 54, iss. 2
Strony 440--447
Opis fizyczny Bibliogr. 28 poz., rys., tab.
autor Wolosiewicz-Glab, M.
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, Department of Environmental Engineering and Mineral Processing, Mickiewicza 30 Av., 30-059 Krakow, Poland,
autor Ogonowski, S.
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, Poland
autor Foszcz, D.
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, Department of Environmental Engineering and Mineral Processing, Mickiewicza 30 Av., 30-059 Krakow, Poland
autor Gawenda, T.
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, Department of Environmental Engineering and Mineral Processing, Mickiewicza 30 Av., 30-059 Krakow, Poland
CLERMONT B., DE HAAS B., 2010. Optimization of mill performance by using online ball and pulp measurements. The Journal of the Southern African Institute of Mining and Metallurgy, 110, 133-140.
CULLINAN, V. J., GRANO, S. R., GREET, C. J., JOHNSON, N. W., RALSTON, J., 1999. Investigating fine galena recovery problems in the lead circuit of Mount Isa Mines Lead/Zinc Concentrator part 1: Grinding media effects. Minerals Eng. 12(2), 147-163.
DRZYMALA, J., 2007. Mineral Processing, Foundations of Theory and Practice of Minerallurgy. 1st English ed..; Oficyna Wydawnicza Politechniki Wroclawskiej, 122-141.
FOSZCZ, D., GAWENDA, T., KRAWCZYKOWSKI, D., 2006. Comparison of real and theoretically estimated energy consumption for ball grinder. Górnictwo i Geoinżynieria, 3(1), 79-90.
FUERSTENAU, M. C., HAN, K. N., 2003. Principle of Mineral Processing. Society for Mining, Metallurgy, and Exploration, Inc., 92-171.
GARG, A., SIU LEE LAM, J., GAO, L., 2015. Energy conservation in manufacturing operations: modelling the milling process by a new complexity-based evolutionary approach. Journal of Cleaner Production, 108, 34-45.
GAWENDA, T., 2009. Main aspects of hard mineral raw materials comminution in high pressure grinding rolls. Górnictwo i Geoinżynieria, 33(4), 89-100.
GAWENDA, T., 2010. Issues of crushing devices selection for mineral aggregates production circuits. Górnictwo i Geoinżynieria, 34(4), 195-209.
GAWENDA, T., 2015. Principles for selection of crushers and technological crushing circuits in crushed-stone aggregate production. Wydawnictwo AGH, 87-200.
GAUDIN, A. M., HUKKI, R. T., 1946. Principles of comminution. Trans SME/AIME, 169, 67-87.
HORST, H., FREEH, J., 1970. Mathematical modelling applied to analysis and control of grinding circuits. AIME Annual Meeting, Salt Lake City, paper 75-B-322.
JANKOVIC, A., 2003. Variables affecting the fine grinding of minerals using stirred mills. Minerals Eng., 16(4), 337-345.
KELLY, E. G., SPOTTISWOOD, D. J., 1982. Introduction to mineral processing. Wiley, New York.
KING, R. P., 2001. Modelling and Simulation of Mineral Processing Systems. Butterworth-Heinemann, Oxford.
LYNCH, A. J., 1977. Mineral Crushing and Grinding Circuits. Eselvier, Amsterdam.
MULAR, A. L., DOUG, N. H., DEREK, J. B., 2002. Mineral Processing Plant Design. Practice and Control Proceedings, SME, 537-669.
NAPIER-MUNN T. J., MORRELL, S., MORRISON, R. D., KOJOVIC, T., 1996. Mineral Comminution Circuits: Their Operation and Optimization. Julius Kruttschnitt Mineral Research Centre, Indooroopilly, Queensland, 20-167.
OGONOWSKI, S., OGONOWSKI, Z., PAWELCZYK, M., 2016. Model of the air stream ratio for an electromagnetic mill control system. 21st International Conference on Methods and Models in Automation and Robotics (MMAR),
PAWELCZYK, M., OGONOWSKI, Z., OGONOWSKI, S., FOSZCZ, D., SARAMAK, D., GAWENDA, T., 2015. A method for parameterization of air classifier integrated with a mill (in polish), patent application no. P.413042 (July 6, 2015).
WARACH, J., 1996. Chemical apparatus and process. Oficyna Wydawnicza Politechniki Warszawskiej, 112-126.
WILLS, B., NAPIER-MUNN, T., 2006. Mineral Processing Technology. 7th Ed., Pergamon Press, Oxford, 146-186.
WOLOSIEWICZ-GLAB, M., FOSZCZ, D., 2015. Comparative analysis of the possibility of obtaining fine grain size in a ball and electromagnetic mill, taking into account the optimization of transport costs of raw materials. Logistyka, 4, 9930–9938.
WOLOSIEWICZ-GLAB, M., OGONOWSKI, S., FOSZCZ, D., 2016a. Construction of the electromagnetic mill with the grinding system, classification of crushed minerals and the control system. IFAC-PapersOnLine, 49-20, 67-71,
WOLOSIEWICZ-GLAB, M., FOSZCZ, D., GAWENDA, T., OGONOWSKI, S., 2016b. Role of classification in grinding using the electromagnetic mill: a case study. E3S Web of Conferences, 8(01065), 1-8.
SIDOR, J., FOSZCZ, D., TOMACH P., KRAWCZYKOWSKI, D., 2015. High-energy mills for ores and mineral raw materials. KGHM Cuprum, 2, 71-85.
SUBBA, R., 2016. Minerals and Coal Process Calculations. CRC Press, 68-76.
SZTABA, K., 2000. Mineral engineering. Journal of the Polish Mineral Engineering Society 1, 3-14.
TUMIDAJSKI, T., KASINSKA-PILUT, E., GAWENDA, T., NAZIEMIEC, Z., PILUT, R., 2010. Investigation of grinding process energy consumption and grindability of lithologic components of Polish copper ores. Gospodarka Surowcami Mineralnymi, 26(1), 61-72.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-b7aeb6e6-d8c4-4736-80c8-86a09b58511e
DOI 10.5277/ppmp1867