PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of hydroxyapatite synthesis and microplasma spraying of porous coatings onto titanium implants

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the main results of development and optimization of the synthesis of hydroxyapatite and the application of the micro-plasma spraying technique for biocompatible coatings. The hydroxyapatite synthesis was optimized using the mathematical modelling method. Synthesized hydroxyapatite was studied by IR spectrometry and X-ray diffraction analysis for assessment of the compatibility of the chemical and phase composition to the bone tissue. The Ca/P ratio of the obtained hydroxyapatite was 1.65, which is close to that of bone tissue (1.67). To increase the adhesion strength of the HA coating to the surface of the titanium implant, it was suggested to apply a titanium sublayer to the implant surface. Microplasma spraying (MPS) of biocompatible coatings from titanium wires and synthesized HA powders onto substrates made of medical titanium alloy has been carried out. Microplasmatron MPN-004 is used to obtain the two-layer coatings for titanium implants. The two layer coating includes a sub-layer of a porous titanium coating with a thickness in range from 200 up to 300 μm and the porosity level of about 30%, and an upper layer of HA about 100 μm thick with 95% level of HA phases and 93% level of crystallinity. The pore size varies from 20 to 100 μm in both coatings. The paper describes the technology and modes of microplasma deposition of two-layer coatings, including the mode of gas-abrasive treatment of the surface of implants made of titanium alloy before spraying. The synthesized HA powder and the Ti/HA coatings were investigated by optical microscopy and scanning electron microscopy with the energy dispersion analysis and the X-ray diffraction analysis.
Rocznik
Strony
79--94
Opis fizyczny
Bibliogr. 46 poz., rys., wykr., tab.
Twórcy
  • Department of Instrument Engineering and Technology Process Automation, D.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan, dalontseva@mail.ru
autor
  • S. Amanzholov East Kazakhstan State University, Ust-Kamenogorsk, Kazakhstan,
  • S. Amanzholov East Kazakhstan State University, Ust-Kamenogorsk, Kazakhstan,
  • E.O. Paton Electric Welding Institute, Kiev, Ukraine
  • E.O. Paton Electric Welding Institute, Kiev, Ukraine
  • E.O. Paton Electric Welding Institute, Kiev, Ukraine
  • Faculty of Engineering and Advanced Manufacturing, University of Sunderland, UK
autor
  • Department of Instrument Engineering and Technology Process Automation, D.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan
autor
  • Department of Materials Science, Strength and Welding, Mechanical Engineering Faculty Wrocław University of Science and Technology, Poland
Bibliografia
  • 1. Tobin E.J.: Recent coating developments for combination devices in orthopedic and dental applications. A literature review. Advanced Drug Delivery Reviews 112 (2017) 88-100.
  • 2. Goodman S.B., Yao Z., Keeney M., Yang F.: The future of biologic coatings for orthopaedic implants. Biomaterials 34 (2013) 3174-3183.
  • 3. Heimann Robert B.: Materials Science of Bioceramic Coatings. The Open Biomedical Engineering Journal 9 (2015) 25–28.
  • 4. Sakka S., Bouaziz J., Ayed F.B.: [In] Advances in Biomaterials Science and Biomedical Applications, R. Pignatello [ed.], InTech, London, UK, 2013, pp. 23-50.
  • 5. Rahbek O., Overgaard S., Lind M., Bendix K., Bunger C., Soballe K.: Sealing effect of hydroxyapatite coating on peri-implant migration of particles. An experimental study in dogs. J Bone Joint Surg Br. [ed.], 2001, 83, 441–7.
  • 6. Geesink RG.: Osteoconductive coatings for total joint arthroplasty. Clin Orthop Relat Res. [ed.], 2002, 395, 53–65.
  • 7. Waheed S., Sultan M., Jamil T., Hussain T.: Comparative analysis of hydroxyapatite synthesized by sol-gel, ultrasonication and microwave assisted technique. Journal home page for Materials Today: Proceedings 2 (2015) 5477-5484.
  • 8. Szcześ A., Hołysz L., Chibowski E.: Synthesis of hydroxyapatite for biomedical applications. Advances in Colloid and Interface Science 249 (2017) 321-330.
  • 9. Fihri A., Len C., Varmac R.S., Solhy A.: Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coordination Chemistry Reviews 347 (2017) 48-76.
  • 10. Geesink R. G. T.: Hydroxylapatite coatings in orthopedic surgery, R. G. T. Geesink, M. T. Manicy [ed.], Raven Press, Ltd. New York, 1993, pp. 1-319.
  • 11. Betke A., Kickelbick G.: Bottom-Up, wet chemical technique for the continuous synthesis of inorganic nanoparticles. Inorganics 2 (2014) 1-15.
  • 12. Vilardell A.M., Cinca N., Garcia-Giralt N., Dosta S., Cano I.G., Nogués X., Guilemany J.M.: Functionalized coatings by cold spray: An in vitro study of micro- and nanocrystalline hydroxyapatite compared to porous titanium. Materials Science and Engineering 87 (2018) 41-49.
  • 13. Farrokhi-Rad M.: Electrophoretic deposition of hydroxyapatite fiber reinforced hydroxyapatite matrix nanocomposite coatings. Surface and Coatings Technology 329 (2017) 155-162.
  • 14. Adeleke S.A., Ramesh S., Bushroa A.R., Ching Y.C., Sopyan I., Maleque M.A., Krishnasamy S., Chandran H., Misran H., Sutharsini U.: The properties of hydroxyapatite ceramic coatings produced by plasma electrolytic oxidation. Ceramics International 44 (2018) 1802-1811.
  • 15. Ivanova A.A., Surmeneva M.A., Tyurin A.I., Surmenev R.A.: Correlation between structural and mechanical properties of RF magnetron sputter deposited hydroxyapatite coating. Materials Characterization 142 (2018) 261-269.
  • 16. Trommer R.M., Santos L.A., Bergmann C.P.: Alternative technique for hydroxyapatite coatings. Surface and Coatings Technology 201 (2007) 9587-9593.
  • 17. Liu Y.-C., Lin G.S., Wang J.-Y., Cheng C.-S., Yang Y.-C., Lee B.-S., Tung K.-L.: Synthesis and characterization of porous hydroxyapatite coatings deposited on titanium by flame spraying. Surface and Coatings Technology 349 (2018) 357-363.
  • 18. Hidalgo-Robatto B.M., López-Álvarez M., Azevedo A.S., Dorado J., Serra J., Azevedo N.F., González P.: Pulsed laser deposition of copper and zinc doped hydroxyapatite coatings for biomedical applications. Surface and Coatings Technology 333 (2018) 168-177.
  • 19. Domínguez-Trujillo C., Peón E., Chicardi E., Pérez H., Rodríguez-Ortiz J.A., Pavón J.J., García-Couce J., Galván J.C., García-Moreno F., Torres Y.: Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surface and Coatings Technology 333 (2018) 158-162.
  • 20. Xu H., Geng X., Liu G., Xiao J., Li D., Zhang Y., Zhu P., Zhang C.: Deposition, nanostructure and phase composition of suspension plasma-sprayed hydroxyapatite coatings. Ceramics International 42 (2016) 8684-8690.
  • 21. Matassi F., Botti A., Sirleo L., Carulli C., Innocenti M.: Porous metal for orthopedics implants Clin. Cases Miner. Bone Metab. 10(2) (2013) 111-115 PMID: 24133527.
  • 22. Yang C.Y., Wang B.C., Chang E., Wu B.C.: The influences of plasma spraying parameters on the characteristics of hydroxyapatite coatings: a quantitative study. J. of Materials Sci.: Materials in Medicine 6 (1995) 249-257.
  • 23. Heimann R.B.: Thermal spraying of biomaterials, Surface and Coatings Technology. 201 (2006) 2012-2019.
  • 24. Sridhar T.M., Kamachi U. and Subbaiyan M.: Sintering atmosphere and temperature effects on hydroxyapatite coated type 316L stainless steel. Corros. Sci. 45 (2008) 2337-2359.
  • 25. Yang Y., Kim K., Agrawal C. M. and Ong J. L.: Interaction of hydroxyapatite-titanium at elevated temperature in vacuum environment. Biomaterials. 25 (2004) 2927-2932.
  • 26. Implants for Surgery- Hydroxyapatite. Part 2: Coatings of Hydroxyapatite. International Organisation for Standards. BS ISO 13779-2:2000, 2000.
  • 27. Vahabzadeh S., Roy M., Bandyopadhyay A., Bose S.: Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomaterialia 17 (2015) 47-55.
  • 28. Overgaard S, Bromose U, Lind M, Bunger C, Soballe K.: The influence of crystallinity of the hydroxyapatite coating on the fixation of implants. Mechanical and histomorphometric results, J Bone Joint Surg Br. 1999, 81, 725–31.
  • 29. Sun L, Berndt CC, Khor KA, Cheang HN, Gross KA.: Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. J Biomed Mater Res. 62(2) (2002) 228–36.
  • 30. Rouholamin D., Smith P. J., Ghassemieh E.: Control of morphological properties of porous biodegradable scaffolds processed by supercritical CO2 foaming. J Mater Sci 48 (2015) 3254–3263.
  • 31. Wiria F.E., Tay B.Y., Ghassemieh E.: Morphological and cell growth assessment in near dense hydroxyapatite scaffold. Journal of Materials ID 287853 (2013).
  • 32. Łatka L., Pawlowski L., Chicot D., Pierlot C., Petit F.: Mechanical properties of suspension plasma sprayed hydroxyapatite coatings submitted to simulated body fluid. Surface and Coatings Technology 205 (2010) 954-960.
  • 33. Yushenko K., Borisov Yu., Voynarovych S., Fomakin О.: Plasmatron for spraying of coatings/Pub. No.: WO/2004/010747 International Application. No.: PCT/UA2003/000014 Publication Date: 29.01.2004; International Filing Date: 25.04.2003, IPC: H05H 1/32. – 2006.
  • 34. Borisov Yu.S., Voinarovych S.G., Kyslytsia A.N., Borisova A.L., Tunik A. Yu.: Effect of coatings. Proc. of the Int. Thermal Spray Conference and Exposition ITSC 2006, Building on 100 Years of Success, Seattle, Washington, USA (2006) 29-34.
  • 35. Yuschenko K.A., Borisov Yu.S., Borisova A.L., Voinarovych S.G., Kyslytsia A.N., Tunik A. Yu., Adeeva L.I., Kuzmich- Yanchuk E.K.: Mikroplazmennoye provolochnoye napyleniye biomeditsinskikh titanovykh pokrytiy. Poroshkovaya metallurgiya. Sbornik nauchnykh trudov. Minsk: izdatelstvo «Belaruskaya navuka» Is.36 (2013) 261–268.
  • 36. Yushchenko K.A., Borisov Yu.S., Voinarovych S.G, Kyslytsia O. N., Kuzmich-Yanchuk Ye.K., Gaiko G.V., Pidgaetsky V. M.: Dvukhsloynoye biokermetnoye pokrytiye titan-gidroksiapatit. Problemi resursu bezpekiyekspluatatsії konstruktsіy, sporudta mashin. Sbornik trudov posvyashchennyy vypolneniyu kompleksnoy programmy. Kiev (2009) 542–547.
  • 37. Voinarovych S.G.: Vliyaniye parametrov mikroplazmennogo napyleniya na koeffitsiyent ispolzovaniya materiala pri napylenii biokeramicheskogo pokrytiya. Obrobka Materіalіv u Mashinobuduvanni (2010) 58-61.
  • 38. Thirumalaikumarasamya D., Shanmugama K., Balasubramanian V.: Influences of atmospheric plasma spraying parameters on the porosity level of alumina coating on AZ31B magnesium alloy using response surface methodology. Progress in Natural Science: Materials International 22(5) (2012) 468–479.
  • 39. Mohseni E., Zalnezhad E., Bushroa A.R.: Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper. International Journal of Adhesion and Adhesives 48 (2014) 238-257.
  • 40. Alontseva D.L., Borisov Yu. S., Voinarovych S.G., Kyslytsia O. N., Kolesnikova T.A., Prokhorenkova N.V., Kadyroldina A.T.: Development of technology of microplasma spraying for the application of biocompatible coatings in the manufacture of medical implants. Przegląd Elektrotechniczny 94 (7) (2018) 94-97.
  • 41. Alontseva D.L., Voinarovych S.G., Kyslytsia O. N., Dzhes A.V., Russakova A.V., Prokhorenkova N.V., Krasavin A.L., Leonova M.O.: Structural-phase transformations in coatings from biocompatible materials applied by microplasma spraying onto titanium implants. Basic Problems of Material Science 15 (1) (2018) 126-132.
  • 42. Sobczak A., Kowalski Z., Wzorek Z.: Preparation of hydroxyapatite from animal bones. Acta of Bioengineering and Biomechanics 11(4) (2009) 23-28.
  • 43. ASTM E2109-01(2014) Standard test methods for determining area percentage porosity in thermal sprayed coatings, ASTM International, West Conshohocken, PA, 2014
  • 44. Abilev M.B, Troyeglazova A.V., Akatan K., Alontseva D.L.: Mathematical modeling of the process of hydroxyapatite synthesis. Proc. 8-th Int. Conf. on Chemistry and Chemical Education Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus, 2018, p. 25.
  • 45. Gagg G., Ghassemieh E., Wiria F.E.: Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant Materials. Science & Engineering C. Materials for Biological Applications 33(7) (2013) 3858-3864.
  • 46. Gagg G., Ghassemieh E., Wiria F.E.: Analysis of the compressive behavior of the threedimensional printed porous titanium for dental implants using a modified cellular solid model. Proc IMechE Part H: J Engineering in Medicine 0(0) (2013) 1–7.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7a59102-1f85-4c5f-a39c-ec37f7462795
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.