Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-thermal plasmas induced electrostatic stress on corneocyte desquamation

Treść / Zawartość
Warianty tytułu
Języki publikacji
The advent of non-thermal plasma brought a breakthrough in exploring its clinical applications in dermatology to bolster tissue generation in the domain of plasma medicine. This study aimed to investigate the effect of non-thermal plasma on the corneocyte of the skin cells, in treating superficial skin diseases via the process of corneocyte desquamation, a probable mechanism for skin cell proliferation. The postulated brick and mortar arrangement of corneocytes in the stratum corneum was modeled consisting of three corneocytes and three corneodesmosomes in a simulation domain of 40.30 × 3.00 μm2 using Maxwell 2D finite element analyzer. The corneocyte desquamation was quantified by the weakening of corneodesmosomes due to electrostatic pressure (~530 MV/m) on the corneodesmosome surface exceeding its tensile strength (~76 MPa). A mathematical model displaying a relationship between the plasma potential and the skin tensile strength is also presented in this investigation. The non-thermal plasma could emerge as a clean and dry therapy to treat superficial skin diseases. Our study propels investigating the interaction of non-thermal plasma with the wet tissue in the deeper layer (dermis) of the skin cells and also, the development of such instruments for a comprehensive skin treatment.
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
  • Department of Biomedical Engineering, College of Medical Science, Catholic University of Daegu, Republic of Korea,
  • Department of Biomedical Engineering, College of Medical Science, Catholic University of Daegu, Republic of Korea
  • [1] BOUWSTRA J.A., HONEYWELL-NGUYEN P.L., GOORIS G.S., PONEC M., Structure of the skin barrier and its modulation by vesicular formulations, Prog. Lipid Res., 2003, Vol. 42, 1–36.
  • [2] CHAPMAN S.J., WALSH A., JACKSON S.M., FRIEDMANN P.S., Lipids, proteins and corneocyte adhesion, Arch. Dermatol. Res., 1991, Vol. 283, 167–173.
  • [3] HARDING C.R., The stratum corneum: structure and function in health and disease, Dermatol. Ther., 2004, Vol. 17, 6–15.
  • [4] ISHIDA-YAMAMOTO A., IGAWA S., KISHIBE M., Order and disorder in corneocyte adhesion, J. Dermatol., 2011, Vol. 38, 645–654.
  • [5] LEVI K., BAXTER J., MELDRUM H., MISRA M., PASHKOVSKI E., DAUSKARDT R.H., Effect of corneodesmosome degradation on the intercellular delamination of human stratum corneum, J. Invest. Dermatol., 2008, Vol. 128, 2345–2347.
  • [6] KALGHATGI S., KELLY C.M., CERCHAR E., TORABI B., ALEKSEEV O., FRIDMAN A., FRIEDMAN G., CLIFFORD J.A., Effects of non-thermal plasma on mammalian cells, PloS one 6, 2011, 6, e16270.
  • [7] HEINLIN J., MORFILL G., LANDTHALER M., STOLZ W., ISBARY G., ZIMMERMANN J.L., SHIMIZU T., KARRER S., Plasma medicine: possible applications in dermatology, JDDG, 2010, Vol. 8, 1610–0379.
  • [8] ALEXANDER F., Plasma Chemistry, Cambridge University Press, New York, USA, 2008.
  • [9] CHAVANAS S., BODEMER C., ROCHAT A., HAMEL-TEILLAC D., ALI M., IRVINE A.D., BONAFE J.L., WILKINSON J., TAIEB A., BARRANDON Y., HARPER J.I., PROST Y. DE, HOVNANIAN A., Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome, Nat. Genet., 2000, Vol. 25, 141–142.
  • [10] SANDBY-MOLLER J., POULSEN T., WULF H.C., Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits, Acta. Dermato. Venereologica., 2003, Vol. 83, 410–413.
  • [11] MORRISON J.C.F., WEAVER B.C., Electrosurgical method and apparatus for initiating an electrical discharge in an inert gas flow, United States Patent, 4057064, 1977.
  • [12] GINSBERG G.G., BARKUN A.N., BOSCO J.J., BURDICK J.S., ISENBERG G.A., NAKAO N.L., PETERSEN B.T., SILVERMAN W.B., SLIVKA A., KESLEY P.B., The argon plasma coagulator, Gastrointest Endosc., 2002, Vol. 55, 807–810.
  • [13] SHULUTKO A.M., ANTROPOVA N.V., KRIUGER I.A., NOtherapy in the treatment of purulent and necrotic lesions of lower extremities in diabetic patients, KHIRURGIYA (Mosk), 2004, Vol. 12, 43–46.
  • [14] MERTENS N., HELMKE A., GOPPOLD A., EMMERT S., KAEMLING A., WANDKE D., VIOEL W., Low temperature plasma treatment of human tissue, Second International Conference on Plasma Medicine, San Antonio, Texas, USA, 2009.
  • [15] ELIAS P.M., Epidermal lipids, barrier function, and desquamation, J. Invest. Dermatol., 1983, Vol. 80, 44–49.
  • [16] JOHNSON M.E., BLANKSCHTEIN D., LANGER R., Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism, J. Pharm. Sci., 1997, Vol. 86, 1162–1172.
  • [17] RIM J.E., PINSKY P. M., OSDOL W.W. VAN, Using the method of homogenization to calculate the effective diffusivity of the stratum corneum, J. Membrane Sci., 2007, Vol. 293, 174–182.
  • [18] MOLLEE T.R., BRACKEN A.J., A model of solute transport through stratum corneum using solute capture and release, B. Math. Biol., 2007, Vol. 69, 1887–1907.
  • [19] GABRIEL C., GABRIEL S., CORTHOUT E., The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol., 1996, Vol. 41, 2231–2249.
  • [20] GABRIEL S., LAU R.W., GABRIEL C., The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol., 1996, Vol. 41, 2251–2269.
  • [21] GABRIEL S., LAU R.W., GABRIEL C., The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Phys. Med. Biol., 1996, Vol. 41, 2271–2293.
  • [22] YAMAMOTO T., YAMAMOTO Y., Electrical properties of the epidermal stratum corneum, Med. Biol. Eng. Comput., 1976, Vol. 14, 151–158.
  • [23] BURTON R., Biomedical calculations: principles and practice, John Wiley & Sons, Ltd., England, 2008.
  • [24] ATTARD P., ANTELMI D., LARSON I., Comparison of the zeta potential with the diffuse layer potential from charge titration, Langmuir, 2000, 16, 1542–1552
  • [25] LAUROSSI M., MENDIS D.A., ROSENBERG M., Plasma interaction with microbes, New J. Phys., 2003, 5, 1–10.
  • [26] TIWARI P.K., KANG S.K., KIM G.J., CHOI J., MOHAMED A.-A.H, LEE J.K., Modeling of nanoparticle-mediated electric field enhancement inside biological cells exposed to AC electric fields, Jpn. J. Appl. Phys., 2009, 48, 0870011–0870017.
  • [27] CHALLA S., KUMAR S.R., Tissue, cell and organ engineering (nanotechnologies for the life science), WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2008.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.