Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hysteretic behaviour model of soils under cyclic loads

Warianty tytułu
Języki publikacji
The article reports the application of the mathematical theory of hysteresis to soil dynamics to characterise its behaviour under the action of cyclic loads. Based on appropriate laboratory experiments for a given soil, the achieved values were verified in simulations. The cycle shapes of stress–strain shear response for all strain levels and different combinations of static and cyclic shear stress loading were replicated. For proper characterisation in the case of repeated loads, the model incorporates the phenomenon of degradation of the structure and generation of excess pore pressure in considering its continuous variation throughout the loading process using an energy approach. The model is defined by parameters with physical interpretations that are evident from the tests.
Opis fizyczny
Bibliogr. 54 poz.
  • Technical University of Madrid, ETSI Caminos, C. y P, C/Profesor Aranguren s/n, 28040 Madrid, Spain,
  • Technical University of Madrid, ETSI Caminos, C. y P, C/Profesor Aranguren s/n, 28040 Madrid, Spain
  • Complutence University of Madrid, Madrid, Spain
  • 1. Andersen KH (1975) Repeated loading on clay. Summary and interpretation of test results. Research Project NGI Internal Report: 74037-9
  • 2. Bauer E (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils Found 36(1):13–26
  • 3. Bazant Z, Krizek R (1975) Saturated sand as inelastic two-phase medium. ASCE J Eng Mech Div 101(4):317–332
  • 4. Bertotti G (1998) Hysteresis in magnetism. Academic Press, Boston
  • 5. Biorci G, Pescetti D (1959) Some consequences of the analytical theory of the ferromagnetic hysteresis. Journal de Physique et Le Radium 20:233–236
  • 6. Booker JR, Rahman M, Seed HB (1976) GADFLEA: a computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading. California Univ., Berkeley (USA). Earthquake Engineering Research Center
  • 7. Brown SF, Lashine AKF, Hyde AFL (1975) Repeated load triaxial testing of a silty clay. Geotechnique 25(1):95–114
  • 8. Byrne PM (1991) A cyclic shear volume coupling and pore pressure model for sand. In: Proceeding 2º international conference on recent advances in geotechnica, earthquake engineering and soil dynamics, St. Louis, Missouri. Paper, vol 124, pp 47–55
  • 9. Cuellar V, Bazant ZP, Krizek RJ, Silver ML (1997) Densification and hysteresis of sand under cyclic shear. J Geotech Geoenviron Eng 103:399–416
  • 10. Dafalias YF, Herrmann LR (1982) Bounding surface formulation of soil plasticity. In: Pande GN, Zienkiewicz OC (eds) Chapter 10 in soil mechanics-transient and cyclic loads. John Wiley and Sons Ltd, pp 253–282
  • 11. Del Vecchio R (1980) An efficient procedure for modeling complex hysteresis processes in ferromagnetic materials. IEEE Trans Magn 16:809–811
  • 12. Dicleli M, Karalar M (2011) Optimum characteristic properties of isolators with bilinear force–displacement hysteresis for seismic protection of bridges built on various site soils. Soil Dyn Earthq Eng 31:982–995
  • 13. Drucker DC, Gibson RE, Henkel DJ (1957) Soil mechanics and work hardening theories of Plasticity. ASCE Trans 122:338–346
  • 14. Finn WDL, Byrne PM (1976) Estimating settlement in dry sands during earthquakes. Can Geotech J 13(4):355–363
  • 15. Galindo RA, Lara A, Melentijevic S (2019) Hysteresis model for dynamic load under large strains. Int J Geomech 19(6)
  • 16. Green RA, Mitchell JK, Polito CP (2000) An energy-based pore pressure generation model for cohesionless soils. In: Smith DW, Carter JP (eds) Proceeding John Booker memorial symposium. Developments in theoretical geomechanics. Balkema, Rotterdam, Netherlands, pp 383–390
  • 17. Gudehus G (1996) A comprehensive constitutive equation for granular materials. Soils Found 36(1):1–12
  • 18. Idriss IM, Dobry R, Singh R (1978) Nonlinear behavior of soft clays during cyclic loading. J Geotech Geoenviron Eng 104(12):1427–1447
  • 19. Iwan WD (1967) On a class of models for the yielding behavior of continuous and composite systems. J Appl Mech 34:612–617
  • 20. Kolymbas D, Herle I, Wolffersdorff PA (1995) Hypoplastic constitutive equation with back stress. Int J Numer Anal Methods Geomech 19(6):415–446
  • 21. Krasnosel’skii M, Pokrovskii A (1989) Systems with hysteresis. Springer, New York
  • 22. Lade PV, Kim MK (1988a) Single hardening constitutive model for frictional materials- II. Yield criterion and plastic work contour. Comput Geotech 6:13–29
  • 23. Lade PV, Kim MK (1988b) Single hardening constitutive model for frictional materials- III. Comparisons with experimental data. Comput Geotech 6:31–47
  • 24. Lee KL, Albaisa A (1974) Earthquake induced settlement in saturated sands. J Geotech Eng 100(4):387–406
  • 25. Martin GR, Finn WD, Seed HB (1975) Fundamentals of liquefaction under cyclic loading. J Geotech Eng 101:423–438
  • 26. Martinez E, Patiño H, Galindo R (2017) Evaluation of the risk of sudden failure of a cohesive soil subjected to cyclic loading. Soil Dyn Earthq Eng 92:419–432
  • 27. Matasovic N, Vucetic M (1995) Generalized cyclic-degradation-pore-pressure generation model for clays. J Geotech Eng 121(1):33–42
  • 28. Matsui T, Ohara H, Ito T (1980) Cyclic stress-strain history and shear characteristics of clay. J Geotech Geoenviron Eng 106(10):1101–1120
  • 29. Mroz Z (1967) On the description of anisotropic workhardening. J Mech Phys Solids 15(3):163–175
  • 30. Ochiai H (1975) The behavior of sands in direct shear tests. Geotech Test J 15(4):93–100
  • 31. Oda M, Konishi J (1974) Rotation of principal stresses in granular material during simple shear. Soils Found 14(4):39–53
  • 32. Pastor M, Zienkiewicz OC, Chan AHC (1990) Generalized plasticity and the modeling of soil behavior. Int J Numer Anal Meth Geomech 14:151–190
  • 33. Patiño CH (2009) Influencia de la combinación de tensiones tangenciales estáticas y cíclicas en la evaluación de parámetros estáticos y cíclicos de un suelo cohesivo. Dissertation, Technical University of Madrid
  • 34. Peng J, Lu J, Law KH, Elgamal A (2004) PARCYCLIC: finite-element modeling of earthquake liquefaction response on parallel computers. In: Proceeding 13th world conference on earthquake engineering, international association for earthquake engineering, Tokyo, Japan, p 361
  • 35. Pestana JM, Biscontin G (2001) A simplified model describing the cyclic behavior of lightly overconsolidated clays in simple shear. Geotechnical Engineering Report 2001; No UCB/GT/2000-03
  • 36. Pestana JM, Whittle AJ (1999) Formulation of a unified constitutive model for clays and sands. Int J Numer Anal Methods Geomech 23(12):1215–1243
  • 37. Prevost JH (1979) Undrained shear tests on clays. J Geotech Geoenviron Eng 105(1):49–64
  • 38. Roscoe KH, Basset RH, Cole ERL (1967) Principal axes observed during simple shear of a sand. In: Proceeding geotechnical conference, vol 1. Oslo, pp 231–237
  • 39. Sağlam S, Bakır BS (2014) Cyclic response of saturated silts. Soil Dyn Earthq Eng 61:164–175
  • 40. Sas W, Gabryś K, Szymański A (2017) Experimental studies of dynamic properties of quaternary clayey soils. Soil Dyn Earthq Eng 95:29–39
  • 41. Schofield AN, Wroth CP (1969) Critical state soil mechanics. Mc Graw Hill, London
  • 42. Seed HB, Tokimatsu K, Harder L, Chung R (1985) Influence of SPT procedures in soil liquefaction resistance evaluations. J Geotech Eng 111(12):1425–1445
  • 43. Sherif MA, Wu MJ (1971) Pore pressure variation during cyclic static tests. In: Proceedings of the 6th annual engineering geology and soils engineering symposium, pp 37–54
  • 44. Sun J, Yuan X (2006) A simplified formula for estimating real-time pore water pressure of anisotropically consolidated saturated sands under random earthquake loads. In: Proceeding GeoShanghai, Geotechnical Special Publication No. 150, ASCE/GEO Institute, Reston, pp 444–451
  • 45. Teachavorasinskun S, Thongchim P, Lukkunaprasit P (2001) Shear modulus and damping ratio of a clay during undrained cyclic loading. Geotechnique 51(5):467–470
  • 46. Tsai CC, Mejia LH, Meymand P (2014) A strain-based procedure to estimate strength softening in saturated clays during earthquakes. Soil Dyn Earthq Eng 66:191–198
  • 47. Valanis KC (1971a) A theory of viscoplasticity without a yield surface, part I: general theory. Arch Mech Stosow 23:517–534
  • 48. Valanis KC (1971b) A theory of plasticity without yield surface, part II: application to mechanical behavior of metals. Arch Mech Stosow 23:535–551
  • 49. Visintin A (2005) Mathematical models of hysteresis. The science of hysteresis. Elsevier, London, pp 1–123
  • 50. Vucetic M (1990) Normalized behavior of clay under irregular cyclic loading. Can Geotech J 27:29–46
  • 51. Whittle AJ (1993) Evaluation of a constitutive model for overconsolidated clays. Geotechnique 43(2):289–313
  • 52. Wichtmann T, Kimmig I, Triantafyllidis T (2017) On correlations between “dynamic” (small-strain) and “static” (large-strain) stiffness moduli—an experimental investigation on 19 sands and gravels. Soil Dyn Earthq Eng 98:72–83
  • 53. Wood DM, Drescher A, Budhu M (1979) On the determination of stress state in the simple shear apparatus. Geotech Test J 2(4):211–221
  • 54. Zergoun M, Vaid YP (1994) Effective stress response of clay to undrained cyclic loading. Can Geotech J 31:714–727
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.