Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Ballistic Resistance of Composites with EN AW-7075 Matrix Reinforced with Al2O3 Particles

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper presents the results of experimental-numerical tests of firing at aluminum composite materials. The test materials were manufactured by pressure infiltration of porous ceramic preforms made of α-Al2O3 particles in the amount of 30% and 40% by volume. The EN AW-7075 alloy was chosen as the material matrix, and the steel 7.62×39 mm (M 43) FMJ (Full Metal Jacket) intermediate ammunition was selected for firing. In the result of the experiment, the samples were perforated with a clear difference in the muzzle diameter. The projectile with fragments caused damage to up to three reference plates placed behind the samples (witness plates) in composites with 40% of particles by volume. The mechanics of crack propagation during ballistic impacts of the projectile was characterized based on microstructure studies. Then, using numerical analysis of impact load, the examination of composite materials puncture in the ABAQUS environment was carried out. The Finite Element Method (FEM) was employed for the discretization of geometric models using Hex elements. The Johnson-Cook constitutive model describing the relationship between stress and strain in metal-ceramic composites was applied for the analyses. Numerical models were then subjected to numerical verification using smoothed particle hydrodynamics (SPH). Based on the obtained results, it was found that the hybrid FEM/SPH method correlates significantly with the experimental results.
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab.
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wroclaw, Poland,
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wroclaw, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Wroclaw, Poland
  • [1] Skaggs, S.R. (2003). A brief history of ceramic armor development. In M. Waltraud Kriven & Hua-Tay Lin (eds.), 14 Book Series: Ceramic Engineering and Science Proceedings. DOI: 10.1002/9780470294802.ch51
  • [2] Swab, J.J. (2013). Advances in ceramic armor VIII. New Jersey: A. John Wiley &Sons Inc. Publ.
  • [3] Crouch, I.G. (2019). Body armour - New materials, new systems. Defence Technology. 15, 241-253. DOI: 10.1016/ j.dt. 2019.02.002.
  • [4] Swab, J.J., Sandoz-Rosado E.J. (2017). Identifying opportunities in the development of ceramic matrix composite (CMC) materials for armor applications. US Army Research Laboratory, Report No. ARL-TR-7987.
  • [5] Belyakov, A.V., Ivanov, D.A. & Fomina, G.A. (1997). A lanxide ceramic composite material. Glass and Ceramics. 54 (7-8), 212-214.
  • [6] Garshin, A.P., Kulik, V.I. & Nilov, A.S. (2012). Analysis of the status and prospects for the commercial use of fiber-reinforced silicon-carbide ceramics. Refractories and Industrial Ceramics. 53(1), 62-70. DOI: 10.1007/s11148-012-9463-9.
  • [7] Dolata, A.J., Dyzia, M. (2012). Aspects of fabrication aluminium matrix heterophase composites by suspension method. IOP Conf. Series: Materials Science and Engineering. 35 012020. DOI:10.1088/1757-899X/35/1/ 012020.
  • [8] Rawlings, R.D. (1994). Glass-ceramic matrix composites. Composites. 25(5), 372-379.
  • [9] Danko, G.A., Popović, D. & Stuffle, K. (1995). Commercial development of fibrous monolithic ceramics. Ceramic Engineering and Science Proceedings. 16(5), 673-680.
  • [10] Kurzawa, A., Pyka, D., Jamroziak, K., Bocian, M., Kotowski, P. &α Widomski P. (2018). Analysis of ballistic resistance of composites based on EN AC-44200 aluminum alloy reinforced with Al2O3 particles. Composite Structures. 201, 834-844.
  • [11] Kurzawa, A., Bocian, M., Jamroziak, K., Pyka, D. (2018). Analysis of ceramic-metallic composites of ballistic resistance on shots by 5.56 mm ammunition. In 23rd Proceedings International Conference on Engineering Mechanics, 15-18 May 2017 (pp. 574-577). Svratka, Czech Republic: Brno University of Technology.
  • [12] Kurzawa, A., Pyka, D., Pach, A., Jamroziak, K. & Bocian, M. (2017). Numerical modeling of the microstructure of ceramic-metallic materials. Procedia Engineering. 199, 1459-1500.
  • [13] Heidenreich, B., Crippa, M., Voggenreiter, H., Strasburger, E., Gedon, H. & Nordmann, M. (2010). Development of biomorphic SiSiC- and C/SiSiC-materials for lightweight armour. Ceramic Engineering and Science Proceedings. 31, 207-220.
  • [14] Wang, S.X., Lan, H.F., Wang, W.J., Huang, Y.J. & Li, S.J. (2019). The influence of casting-calendering process on the microstructure of pure Al2O3 ceramic substrate. Ceramic Engineering and Science Proceedings. 39(1), 15-22.
  • [15] Gawdzinska, K., Nagolska, D. & Szymanski, P. (2018) Determination of Duration and Sequence of Vacuum Pressure Saturation in Infiltrated MMC Castings. Archives of Foundry Engineering. 18(1), 23-28.
  • [16] Kılıc, N. & Ekici, B. (2013). Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition. Materials and Desing. 44, 35-48.
  • [17] Mazurkiewicz, L., Malachowski, J. & Baranowski, P. (2015). Optimization of protective panel for critical supporting elements. Composite Structures. 134, 493-505.
  • [18] Murugesan, M. & Jung, D.J. (2019). Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications. Materials. 12, 609. DOI:10.3390/ma12040609.
  • [19] Murugesan, M., Lee, S., Kim, D., Kang, Y.H. & Kim, N. (2017). A comparative study of ductile damage models approaches for joint strength prediction in hot shear joining process. Procedia Engineering. 207, 1689-1694.
  • [20] Gasiorek, D., Baranowski, P., Malachowski, J., Mazurkiewicz, L. & Wiercigroch, M. (2018). Modelling of guillotine cutting of multi-layered aluminum sheets. Journal of Manufacturing Processes. 34, 374-388.
  • [21] Baranowski, P., Janiszewski, J. & Malachowski, J. (2014). Study on computational methods applied to modeling of pulse shaper in split-Hopkinson bar. Archives of Mechanics. 66(6), 429-452.
  • [22] Baranowski, P., Gieleta, R., Malachowski, J., Damaziak, K. & Mazurkiewicz, L. (2014). Split Hopkinson Pressure Bar impulse experimental measurement with numerical validation. Metrology and Measurement Systems. 21(1), 47-58.
  • [23] Kucewicz, M., Baranowski, P., Malachowski, J., Trzcinski, W., Szymanczyk, L. (2019). Numerical modelling of cylindrical test for determining jones – Wilkins - Lee equation parameters. In E. Rusinski & D. Pietrusiak (Eds.), Lecture Notes in Mechanical Engineering (pp. 388-394). Springer, Cham, Switzerland.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.