Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical and experimental study on the flattening deformation of the rectangular brazen and aluminum columns

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
This paper presents a theoretical and experimental study on lateral compression of square and rectangular metal columns. Some theoretical relations are derived to predict the absorbed energy, the specific absorbed energy and the instantaneous lateral load during the lateral compression. Analytical relations are obtained in two stages: elastic and plastic parts. In the plastic zone, the total absorbed energy by the column is calculated, based on the energy method. Then, an analytical equation is derived to predict the instantaneous lateral load. In the elastic part, the instantaneous load is obtained by linear behavior assumption. To verify the theoretical formulas, some lateral compression tests were carried out on square and rectangular columns and the experimental results are compared with the theoretical predictions, which shows a good agreement. Also, based on the experiments, effects of geometrical dimensions and material properties of the columns on the energy absorption capability are investigated. The results show that the absorbed energy by a column increases proportional to the column length. Also, columns with the thicker wall have the higher specific absorbed energy and so, rectangular columns with the thicker wall are the better energy absorbers during the flattening process. Also, the absorbed energy increases when the length of the column edge along which the load is applied decreases. Also, it is found that the specific absorbed energy by the aluminum columns is higher than the brazen ones and therefore, flattened columns with the high ratio of the flow stress/density are the better energy absorbers.
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
  • Mechanical Engineering Department, Yasouj University, P.O. Box 75914-353, Yasouj, Iran
  • Mechanical Engineering Department, Yasouj University, P.O. Box 75914-353, Yasouj, Iran
  • Mechanical and Aerospace Engineering Department, Shiraz University of Technology, Shiraz, Iran
  • [1] A.G. Olabi, E. Morris, M.S.J. Hashmi, M.D. Gilchrist, Optimised design of nested oblong tube energy absorbers under lateral impact loading, International Journal of Impact Engineering 35 (2008) 10-26.
  • [2] N.K. Gupta, A. Khullar, Collapse load analysis of square and rectangular tubes subjected to transverse in-plane loading, Thin-Walled Structures 21 (1995) 345-358.
  • [3] N.K. Gupta, H. Abbas, Lateral collapse of composite cylindrical tubes between flat platens, International Journal of Impact Engineering 24 (2000) 329-346.
  • [4] N.K. Gupta, G.S. Sekhon, P.K. Gupta, A study of lateral collapse of square and rectangular metallic tubes, Thin-Walled Structures 39 (2001) 745-772.
  • [5] M. Zeinoddini, G.A.R Parke, J.E. Harding, Axially pre-loaded steel tubes subjected to lateral impacts: an experimental study, International Journal of Impact Engineering 27 (2002) 669-690.
  • [6] S.A. Karamanos, C. Eleftheriadis, Collapse of pressurized elastoplastic tubular members under lateral loads, International Journal of Mechanical Sciences 46 (2004) 35-56.
  • [7] K. Liu, K. Zhao, Z. Gao, T.X. Yu, Dynamic behavior of ring systems subjected to pulse loading, International Journal of Impact Engineering 31 (2005) 1209-1222.
  • [8] S.A. Karamanos, K.P. Andreadakis, Denting of internally pressurized tubes under lateral loads, International Journal of Mechanical Sciences 48 (2006) 1080-1094.
  • [9] E. Morris, A.G. Olabi, M.S.J. Hashmi, Analysis of nested tube type energy absorbers with different indenters and exterior constraints, Thin-Walled Structures 44 (2006) 872-885.
  • [10] A. Niknejad, G.H. Liaghat, H. Moslemi Naeini, A.H. Behravash, Experimental and theoretical investigation of the first fold creation in thin walled columns, Acta Mechanica Solida Sinica 23 (2010) 353-360.
  • [11] A. Niknejad, G.H. Liaghat, H. Moslemi Naeini, A.H. Behravash, Theoretical and experimental studies of the instantaneous folding force of the polyurethane foam-filled square honeycombs, Materials and Design 32 (2011) 69-75.
  • [12] A. Niknejad, M.M. Abedi, G.H. Liaghat, M. Zamani Nejad, Prediction of the mean folding force during the axial compression in foam-filled grooved tubes by theoretical analysis, Materials and Design 37 (2012) 144-151.
  • [13] A. Niknejad, S.A. Elahi, G.H. Liaghat, Experimental investigation on the lateral compression in the foam-filled circular tubes, Materials and Design 36 (2012) 24-34.
  • [14] M. Nemat-Alla, Reproducing hoop stress strain behavior for tubular material using lateral compression test, International Journal of Mechanical Sciences 45 (2003) 605-621.
  • [15] Z. Fan, J. Shen, G. Lu, Investigation of lateral crushing of sandwich tubes, Procedia Engineering 14 (2011) 442-449.
  • [16] I.W. Hall, M. Guden, T.D. Claar, Transverse and longitudinal crushing of aluminum-foam filled tubes, Scripta Materialia 46 (2002) 513-518.
  • [17] A.S. Abosbaia, E. Mahdi, A.M.S. Hamouda, B.B. Sahari, A.S. Mokhtar, Energy absorption capability of laterally loaded segmented composite tubes, Composite Structures 70 (2005) 356-373.
  • [18] E. Mahdi, A.M.S. Hamouda, Energy absorption capability of composite hexagonal ring systems, Materials and Design 34 (2012) 201-210.
  • [19] J.A. Deruntz, P.G. Hodge, Crushing of a tube between rigid plates, Journal of Applied Mechanics 30 (1963) 391-398.
  • [20] T. Wierzbicki, W. Abramowicz, On the crushing mechanics of thin-walled structures, Journal of Applied Mechanics 50 (1983) 727-734.
  • [21] S.P. Santosa, T. Wierzbicki, A.G. Hanssen, M. Longseth, Experimental and numerical studies of foam-filled sections, International Journal of Impact Engineering 24 (2000) 509-534.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.