PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Narrowband shortwave minima in spectra of backscattered light from the sea obtained from ocean color scanners as a remote indication of algal blooms

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We propose a new approach to indication of algal blooms. It stems from analysis of the multispectral satellite reflectance Rrs of areas where blooms were documented during recent decades. We found that spectra of algal blooms exhibit minima at wavelengths of channels of Moderate Resolution Imaging Spectroradiometer (MODIS) λ = 443 and λ = 488 nm (Baltic, Black, and Caspian seas), λ = 443 nm (Southwest Tropical Pacific (SWTP)), and λ = 443 nm and λ = 469 nm (Patagonian Continental Shelf (PCS)), attributable to absorption bands of chlorophyll a and accessory pigments. We quantified the minima using indices D1 = Rrs(443) − Rrs (412) and D2 = Rrs (488) − Rrs (469) and proved their diagnostic potential by comparing their distributions to that of Rrs (555). Linear dependence of D1 upon chlorophyll a was found from MODIS data for the bloom of Nodularia spumigena. Time dependences of D1 and D2 point to the latter as a probable remote forerunner of cyanobacterial blooms. In the PCS, D1 and D2 proved to be too simplistic owing to diversity of spectral shapes at λ < 550 nm. Cluster analysis revealed close linkage of the latter and local oceanological conditions. Our findings bear witness to the diagnostic potential of the indices by virtue of their direct relation to pigment absorption and because the broadband background reflectance changes reduce when calculating the indices as a difference of spectrally close reflectances. Further studies are needed to convert the indices to band-difference algorithms for retrieving the bio-optical characteristics of algal blooms.
Słowa kluczowe
Czasopismo
Rocznik
Strony
279--291
Opis fizyczny
Bibliogr. 46 poz., wykr., mapy
Twórcy
  • Laboratory of Ocean Optics, Shirshov Institute of Oceanology RAS, Moscow, Russia , genkar@mail.ru
  • Laboratory of Ocean Optics, Shirshov Institute of Oceanology RAS, Moscow, Russia
Bibliografia
  • [1] Acker, J. G., Leptoukh, G., 2007. Online analysis enhances use of NASA Earth science data. EOS Trans. AGU 88, 14—17.
  • [2] Alexandrov, B. G., Terenko, L. M., Nesterova, D. A., 2012. The first case of a water bloom by Nodularia spumigena Mert. ex Born. Et Flah. (Cyanophyta) in the Black Sea. Algologia 22 (2), 152—165.
  • [3] Anderson, D. M., 2001. Phytoplankton blooms. In: Steele, J.H., Turekian, K. K., Thorpe, S. A. (Eds.), Encyclopedia of Ocean Sciences. Academic Press, London, 2179—2192.
  • [4] Balzano, S., Ellis, A. V., Le Lan, C., Leterme, S. C., 2015. Seasonal changes in phytoplankton on the north-eastern shelf of Kangaroo Island (South Australia) in 2012 and 2013. Oceanologia 57 (3), 251—262, http://dx.doi.org/10.1016/j.oceano.2015.04.003.
  • [5] Biegala, I. C., Aucan, J., Desnues, A., Rodier, M., Dupouy, C., Raimbault, P., Douillet, P., Hunt, B., Pagano, M., Clavere-Graciette, A., Bonnefous, A., Roumagnac, M., Gasol, J., Periot, M., Schenkels, O., Sharma, P., Harlay, J., Eldin, G., Cravatte, S., Marin, F., Varillon, D., Bonnet, S., Roubaud, F., Jamet, L., Gérard, P., Goyaud, A., Legrand, H., Gouriou, Y., Ganachaud, A., 2014. The South Pacific Ocean Time Series (SPOT) station: a first focus on diazotrophs community. In: 140312-Poster ASLO 2014 SPOT.
  • [6] Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R., Brando, V. E., 2014. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 123, 123—144.
  • [7] Burenkov, V. I., Kopelevich, O. V., Pautova, L. V., 2005. Possible causes of the increased content of suspended particles in the northeastern part of the Black Sea in June. Oceanology 45 (Suppl. 1), 39—50.
  • [8] Burenkov, V. I., Vedernikov, V. I., Ershova, S. E., Kopelevich, O. V., Sheberstov, S. V., 2001. Use of the SeaWiFS satellite scanner data on the ocean color for the estimation of the bio-optical characteristics of the Barents Sea waters. Oceanology 41 (4), 461—468.
  • [9] Clarke, G. L., Ewing, G. C., Lorenzen, C. J., 1970. Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration. Science 167 (3921), 1119—1121, http://dx.doi.org/10.1126/science.167.3921.1119.
  • [10] Cokacar, T., Kubilay, N., Oguz, T., 2001. Structure of Emiliania huxleyi blooms in the Black Sea surface waters as detected by SeaWiFS imagery. Geophys. Res. Lett. 28 (24), 4607—4610.
  • [11] Dafner, E. V., Wangersky, P. J., 2002. A brief overview of modern directions in marine DOC studies. Part II — Recent progress in marine DOC studies. J. Environ. Monit. 4, 55—69.
  • [12] Dupouy, C., Benielli-Gary, D., Neveux, J., Dandonneau, Y., Westberry, T. K., 2011. An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific. Biogeosciences 8, 3631—3647.
  • [13] Ferreira, A., Stramski, D., Garcia, C. A. E., Garcia, V. M. T., Ciotti, A. M., Mendes, C. R. B., 2013. Variability in light absorption and scattering of phytoplankton in Patagonian waters: role of community size structure and pigment composition. J. Geophys. Res. Oceans 118, 698—714, http://dx.doi.org/10.1002/jgrc.20082.
  • [14] Jerlov, N. G., 1976. Marine Optics. Elsevier, Amsterdam, 233 pp.
  • [15] Kahru, M., Savchuk, O. P., Elmgren, R., 2007. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Mar. Ecol. Prog. Ser. 343, 15—23, http://dx.doi.org/10.3354/meps06943.
  • [16] Kalle, K., 1963. Ueber das Verhalten und die Herkunft der in der Gewaessern und in die Atmosphaere immer vorhandenen himmelblauen Fluoreszenz. Dtsch. Hydrogr. Z. 16 (4), 153—166.
  • [17] Karabashev, G. S., 2008. Assessing biological-physical interaction in the upper ocean from space: advantages and pitfalls. In: Mertens, L. P. (Ed.), Biological Oceanography Research Trends. Nova Science, New York, 177—192.
  • [18] Karabashev, G. S., Evdoshenko, M. A., 2015. Spectral features of cyanobacterial bloom in the Baltic Sea from MODIS data. Sovremennye problemy distantsionnogo zondirovaniya. Zemli iz kosmosa 12 (3), 158—170, (in Russian).
  • [19] Karabashev, G. S., Evdoshenko, M. A., Sheberstov, S. V., 2006a. Normalized radiance spectrum as a water exchange event diagnostics. Int. J. Remote Sens. 27 (9—10), 1775—1792.
  • [20] Karabashev, G. S., Sheberstov, S. V., Yakubenko, V. G., 2006b. The June maximum of normalized radiance and its relation to the hydrological conditions and coccolithophorid bloom in the Black Sea. Okeanologiya 46 (3), 331—343, [Oceanology 46(3), 305—317].
  • [21] Kopelevich, O. V., Burenkov, V. I., Goldin, Yu. A., Sheberstov, S. V., 2005. Bio-optical studies in the Atlantic ocean combining satellite and ship measured data. In: Proc. III Int. Conf. “Current problems in optics of natural waters” (ONW'20005), Saint-Petersburg, 193—198.
  • [22] Kopelevich, O. V., Sheberstov, S. V., Sahling, I. V., Vazyulya, S. V., Burenkov, V. I., 2013. Bio-optical Characteristics of the Barents, White, Black, and Caspian Seas from Data of Satellite Ocean Color Scanners, http://optics.ocean.ru.
  • [23] Kutser, T., 2004. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 49, 2179—2189.
  • [24] Lubac, B., Loisel, H., 2007. Variability and classification of remote sensing reflectance spectra in the Eastern English Channel and Southern North Sea. Remote Sens. Environ. 110, 45—58.
  • [25] McClain, C., 2001. Ocean color from satellites. In: Steele, J. H., Turekian, K. K., Thorpe, S. A. (Eds.), Encyclopedia of Ocean Sciences. Academic Press, London, 1945—1959.
  • [26] Metsamaa, L., Kutser, T., Strombeck, N., 2006. Recognizing cyanobacterial blooms based on optical signature: a modelling study. Boreal Environ. Res. 11, 493—506.
  • [27] Mobley, C. D., 1994. Light and Water. Radiative Transfer in Natural Waters. Academic Press, San Diego, 592 pp.
  • [28] Moradi, M., 2014. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea. Mar. Pollut. Bull. 87 (1—2), 311—322, http://dx.doi.org/10.1016/j.marpolbul.2014.06.053.
  • [29] Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res. 93 (C9), 10749—10768.
  • [30] Moreno, D. V., Pérez Marrero, J., Morales, J., Llerandi García, C., Villagarcía Úbeda, M. G., Rueda, M. J., Llinás, V., 2012. Phytoplankton functional community structure in Argentinian continental shelf determined by HPLC pigment signatures. Estuar. Coast. Shelf Sci. 100, 72—81.
  • [31] Munk, W., 2002. The evolution of physical oceanography in the last hundred years. Oceanography 15 (1), 135—141.
  • [32] Nasrollahzade, H. S., Makhlough, A., Pourgholam, R., Vahedi, F., Qanqermeh, A., Foong, S. Y., 2011. The study of Nodularia spumigena bloom event in the southern Caspian Sea. Appl. Ecol. Environ. Res. 9 (2), 141—155.
  • [33] Painter, S. A., Poulton, A. J., Allen, J. T., Pidcock, R., Balch, W. M., 2010. The COPAS'08 expedition to the Patagonian Shelf: physical and environmental conditions during the 2008 coccolithophore bloom. Cont. Shelf Res. 30, 1907—1923.
  • [34] Poutanen, E.-L., Nikkilä, K., 2001. Carotenoid pigments as tracers of cyanobacterial blooms in recent and post-glacial sediments of the Baltic Sea. AMBIO 30 (4), 179—183, http://dx.doi.org/10.1579/0044-7447-30.4.179.
  • [35] Sabatini, M. E., Akselman, R., Reta, R., Negri, R. M., Lutz, V. A., Silva, R. I., Segura, V., Gil, M. N., Santinelli, N. H., Sastre, A. V., Daponte, M. C., Antacli, J. C., 2012. Spring plankton communities in the southern Patagonian shelf: hydrography, mesozooplankton patterns and trophic relationships. J. Mar. Syst. 94, 33—51, http://dx.doi.org/10.1016/j.jmarsys.2011.10.007.
  • [36] Schwarz, J. N., Kowalczuk, P., Kaczmarek, S., Cota, G. F., Mitchell, B. G., Kahru, M., Chavez, F. P., Cunningham, A., McKee, D., Gege, P., Kishino, M., Phinney, A. D., Raine, R., 2002. Two models for absorption by coloured dissolved organic matter (CDOM). Oceanologia 44 (2), 209—241.
  • [37] Sellner, K. G., Doucette, G. J., Kirkpatrick, G. J., 2003. Harmful algal blooms: causes, impacts, and detection. J. Ind. Microbiol. Biotechnol. 30 (7), 383—406, http://dx.doi.org/10.1007/s10295-003-0074-9.
  • [38] Sheberstov, S. V., 2015. System for batch processing of oceanographic satellite data. Sovremennye problemy distantsionnogo zondirovaniya. Zemli iz kosmosa 12 (6), 154—161, (in Russian).
  • [39] Soloviev, D., 2005. Identification of the extent and causes of cyanobacterial bloom in September—October 2005 and development of the capacity for observation and prediction of HAB in the southern Caspian Sea using remote sensing technique, http://www.caspianenvironment.org/newsite/DocCenter/2006/HABrepFinalFull_corrected_compressed_pictures.doc.
  • [40] Stramski, D., Babin, M., Wozniak, S. B., 2007. Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater. Limnol. Oceanogr. 52 (6), 2418—2433.
  • [41] Świrgoń, M., Stramska, M., 2015. Comparison of in situ and satellite ocean color determinations of particulate organic carbon concentration in the global ocean. Oceanologia 57 (1), 25—31, http://dx.doi.org/10.1016/j.oceano.2014.09.002.
  • [42] Vazyulya, S. V., Khrapko, A. N., Kopelevich, O. V., Burenkov, V. I., Eremina, T. I., Isaev, A. V., 2014. Regional algorithms for the estimation of chlorophyll and suspended matter concentration in the Gulf of Finland from MODIS-Aqua satellite data. Oceanologia 56 (4), 737—756, http://dx.doi.org/10.5697/oc.56-4.737.
  • [43] Wasmund, N., Busch, S., Gromisz, S., Höglander, H., Jaanus, A., Johansen, V., Jurgensone, I., Karlsson, C., Kownacka, J., Kraśniewski, W., Olenina, I., 2013. Cyanobacteria biomass. HELCOM Baltic Sea Environment Fact Sheet. Online.17-Feb-15., http://www.helcom.fi/baltic-seatrends/environment-fact-sheets/.
  • [44] Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39 (8), 1985—1992.
  • [45] Wozniak, B., Dera, J., 2007. Light Absorption in Sea Water. Springer Science, Business Media, New York, 463 pp.
  • [46] Yasakova, O. N., Stanichnyi, S. V., 2012. Anomal'noe tsvetenie Emiliania huxleyi (Prymnesiophyceae) v Chernom more v 2012 g. (Anomalous blooming of Emiliania huxleyi (Prymnesiophyceae) in the Black Sea in 2012). Mors'kii ekologichnii zhurnal 11 (4), 54 pp., (in Russian).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0db1c24-b7c0-4490-a1d0-a8b812fbad7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.