Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-b0dad6b8-4b55-460c-8c43-618fd6b12ba1

Czasopismo

Archives of Metallurgy and Materials

Tytuł artykułu

Electrochemical Characteristics of Titanium for Dental Implants in Case of the Electroless Surface Modification

Autorzy Klimecka-Tatar, D. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In the paper the results of research under effect of electroless phosphate coating of titanium dental implants on potentiokinetic polarization characteristic obtained in artificial saliva were presented. On the basis of electrochemical studies it was concluded that the electroless process of phosphating beneficialy effect on corrosion characteristic of titanium determined in solution simulating the oral cavity. Furthermore, the proposed technique of chemical treatment of titanium surface is conducive to the homogeneous development of the surface, which is extremely important from the point of view of titanium implants biointegration. Phosphating treatment affect on the development of surface geometry, resulting in a slight increase in roughness parameters (Ra, Rz and Rmax). The temperature increase of electroless phosphating treatment promotes the rate of conversion layer formation, whereas the effect of temperature of the chemical treatment efficiency is secondary important at longer exposure times (e.g. 45 minutes).
Słowa kluczowe
EN titanium implant   hosphating   conversion layer   artificial saliva   potentiokinetic curves  
Wydawca Polish Academy of Sciences, Committee of Metallurgy, Institute of Metallurgy and Materials Science
Czasopismo Archives of Metallurgy and Materials
Rocznik 2016
Tom Vol. 61, iss. 2B
Strony 923--926
Opis fizyczny Bibliogr. 15 poz., rys., wykr., wzory
Twórcy
autor Klimecka-Tatar, D.
  • Czestochowa Univeristy of Technology, Institute of Production Engineering, 69 Dabrowskiego Str., 42-201 Czestochowa, Poland, klimt@wip.pcz.pl
Bibliografia
[1] R. Melechow, K. Tubielewicz, W. Błaszczuk, Tytan i jego stopy, Wyd. P. Cz. Częstochowa 2004 (in Polish).
[2] A. Bylica, J. Sieniawski, Tytan i jego stopy, Wydawnictwo PWN, 1985 (in Polish).
[3] J. Adamus, K. Tubielewicz, Tytan i jego stopy jako materiał stosowany na implanty stomatologiczne, Inżynieria Stomatologiczna Biomateriały 8, 2. (2011) (in Polish).
[4] J. Marciniak, Biomateriały, Wyd. Politechniki Śląskiej, Gliwice 2002 (in Polish).
[5] T. Wierzchoń, E. Czarnowska, D. Krupa, Inżynieria powierzchni w wytwarzaniu biomateriałów tytanowych, Wyd. Politechniki Warszawskiej, Warszawa 2004 (in Polish).
[6] A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface & Coating Technology 200, 2192 (2005).
[7] T. Massalski, Binary alloy phase diagrams, ASM International., The Materials Information Society, USA 1990.
[8] D. Klimecka-Tatar, P. Sygut, S. Borkowski, The kinetics of Ti1Al1Mn alloy thermal oxidation and charcteristic of oxide layer, Arch. Metall. Mater. 60/2, 735-738, 2015.
[9] K. Jagielska-Wiaderek, H. Bala, T. Wierzchon, Corrosion Depth Profiles of Nitrided Titanium Alloy in Acidified Sulphate Solution, Cent. Eur. J. Chem. 11/12, 2005-2011 (2013).
[10] E. Krasicka-Cydzik, Formowanie cienkich warstw anodowych na tytanie i jego implantowych stopach w środowisku kwasu fosforowego, Wyd. Uniwersytetu Zielonogórskiego, Zielona Góra 2003 (in Polish).
[11] S. M. A. Shibli, F. Chacko, Development of nano TiO2-incorporated phosphate coatings on hot dip zinc surface for good paintability and corrosion resistance, Appl. Surf. Sci. 257, 3111-3117 (2011).
[12] B. Feng, J. Weng, B. C. Yang, S. X. Qu, X. D Zhang, Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Biomaterials 25, 17, 3421-3428 (2004).
[13] D. Klimecka-Tatar, G. Pawłowska, R. Orlicki, G. E. Zaikov, Corrosion Characteristics in Acid, Alkaline and the Ringer Solution of Fe68-xCoxZr10Mo5W2B15 Metallic Glasses, J. Balk. Tribol. Assoc. 20/1, 124 (2014).
[14] K. Jagielska-Wiaderek, H. Bala, P. Wieczorek, J. Rudnicki, D. Klimecka-Tatar, Corrosion resistance depth profiles on nitride layers on austenitic stainless steel produced in elevated temperatures, Archv. Metall. Mater. 54/1, 115 (2009).
[15] D. Klimecka-Tatar, K. Radomska, G. Pawłowska, Corrosion resistance, roughness and structure of Co64Cr28Mo5(Fe,Si,AI,Be)3 and Co63Cr29Mo6.5(C,Si,Fe,Mn)1.5 biomedical alloys, J. Balk. Tribol. Assoc. 21/1, 204-210 (2015).
Uwagi
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-b0dad6b8-4b55-460c-8c43-618fd6b12ba1
Identyfikatory
DOI 10.1515/amm-2016-0156