Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous
cannonical link button


Acta of Bioengineering and Biomechanics

Tytuł artykułu

The Upper Limb Motion Deviation Index: A new comprehensive index of upper limb motion pathology

Autorzy Jurkojć, J.  Wodarski, P.  Michnik, R.  Nowakowska, K.  Bieniek, A.  Gzik, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The aim of the research was to formulate a new index enabling assessment of the overall pathology of the upper limb movement. It defines the difference between the pathological movement and a normal movement pattern. Methods: Methodology of determining the index is based on a mathematical algorithm for calculating the Gait Deviation Index which is based on advanced methods of image comparison. To calculate the ULMDI index, one must divide the analyzed movement into cycles appropriate to the nature of the movement (similarly in gait it is the gait cycle) and then determine kinematic quantities (courses of joint angles). Results: A group of 23 healthy people (10 women: k1-k10 and 13 men: m1-m13) as the reference group and a group of 3 persons with mobility impairments (p1-p3) took part in the research. Time values of the angles of the joints on both upper limbs were registered and then ULMDI indexes were calculated. Conclusions: It has been shown that the developed ULMDI index allows to detect the deviations from the accepted norm in the performance of movements. The results showed that both the description of the motor dysfunction of examined person based on the diagnosis of the physician, a detailed analysis of kinematic waveforms received during the tests and the calculated values provide a coherent picture of the state of a human movement. The index analysis is less time-consuming for the doctor, and the comparison of the results at various stages of therapy gives an objective picture of the rehabilitation progress.
Słowa kluczowe
PL patologia   narząd ruchu   ULMDI   indeksacja  
EN upper limb motion pathology   ULMDI   gait deviation index  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 2
Strony 175--185
Opis fizyczny Bibliogr. 25 poz., rys., tab., wykr.
autor Jurkojć, J.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology
autor Wodarski, P.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology
autor Michnik, R.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology,
autor Nowakowska, K.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology
autor Bieniek, A.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology
autor Gzik, M.
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology
[1] Andel C.J.A., Wolterbeek N., Doorenbosch C.A.M., Veeger D.J., Harlaar J., Complete 3D kinematics of upper extremity functional task, Gait & Posture, 2008, 27(1):120–127.
[2] Baker R., McGinley J.L., Schwartz M.H., Beynon S., Rozumalski A., Graham H.K., Tirosh O.: The gait profile score and movement analysis profile, Gait & Posture, 2009, 30(3): 265-269.
[3] Butler E., Ladd A.L., Lamont L.E., Rose J.: Temporal-spatial parameters of the upper limb during a Reach & Grasp Cycle for children, Gait & Posture, 2010, 32(3): 301-306.
[4] Butler E., Jessica R., The Pediatric Upper Limb Motion Index and a temporal–spatial logistic regression: Quantitative analysis of upper limb movement disorders during the Reach & Grasp Cycle, J Biomech, 2012, 45(6): 945-951.
[5] Chang J.J., Wu T.I., Wu W.L., Su F.C., Kinematical measure for spastic reaching in children with cerebral palsy, Clinical Biomechanics, 2005, 20(4): 381-388.
[6] Cline A., Dhillon I., Computation of the Singular Value Decomposition, (in:) Hogben L. (eds) Handbook of Linear Algebra, Chapman and Hall/CRC, 2006, p. 45-1–45-13.
[7] Cretual A, Bervet K, Ballaz L., Gillette Gait Index in adults, Gait & Posture, 2010, 32(3): 307-310.
[8] Guzik-Kopyto A., Michnik R., Wodarski P., Chuchnowska I., Determination of Loads in the Joints of the Upper Limb During Activities of Daily Living, (in:) Piętka E., Badura P., Kawa J., Wieclawek W. (eds.) Information Technologies in Medicine. Advances in intelligence systems and computing, vol. 472, Springer, 2016, p. 99-108.
[9] Jaspers E., Feys H, Bruyninckx H, Klingels K, Molenaers G, Desloovere K., The Arm Profile Score: A new summary index to assess upper limb movement pathology, Gait & Posture, 2011, 34 (2): 227-233.
[10] McMulkin M.L., MacWilliams B.A., Application of the Gillette Gait Index, Gait Deviation Index and Gait Profile Score to multiple clinical pediatric populations, Gait & Posture, 2015, 41(2): 608-612.
[11] Michnik R., Jurkojć J., Rak Z., Mężyk A., Paszenda Z., Rycerski W., Janota J., Brandt J., Kinematic Analysis of Complex Therapeutic Movements of the Upper Limbs, Information Technologies in Biomedicine, Advances in Soft Computing vol. 47, Springer-Verlag Berlin Heidelberg 2008, p. 551-558.
[12] Michnik R., Jurkojć J., Wodarski P., Mosler D., Kalina R.M., Similarities and differences of the body control during professional collision with a vertical obstacle of men aged 24 and 65. Archives of Budo, 2015, 11: 19 – 26.
[13] Michnik R., Jurkojć J., Wodarski P., Gzik M., JochymczykWoźniak K., Bieniek A., Influence of frequency of visual disorders on stabilographic parameters, Acta of Bioengineering and Biomechanics, 2015, 18: 25-33.
[14] Michnik R., Jurkojć J., Wodarski P., Gzik M., Bieniek A., The influence of the scenery and the amplitude of visual disturbances in the virtual reality on the maintaining the balance, Archives of Budo, 2014, 10: 133 – 140.
[15] Nowakowska K., Jochymczyk-Woźniak K., Ocena chodu dzieci z mózgowym porażeniem na podstawie wskaźnika GDI. Aktualne Problemy Biomechaniki, 2014, 8: 127-132.
[16] Palisano R., Rosenbaum P., Bartlett D., Livingston M., Gross Motor Function Classification System Expanded and Revised, CanChild Centre for Childhood Disability Research, McMaster University, Canada 2007.
[17] Riad J., Coleman S., Lundh D., Broström E., Arm posture score and arm movement during walking: A comprehensive assessment in spastic hemiplegic cerebral palsy, Gait & Posture, 2011, 33(1): 48-53.
[18] Roman-liu D., Tokarski T., EMG of arm and forearm muscle activities with regard to handgrip force in relations to upper limb location, Acta of Bioengineering and Biomechanics, 2002, 4(2): 33-48.
[19] Romei R., Galli M., Motta F., Schwartz M., Crivellini M., Use of the normalcy index for the evaluation of gait pathology, Gait & Posture, 2004, 19(1): 85-90.
[20] Rozumalski A., Schwartz M.H., The GDI-Kinetic: A new index for quantifying kinetic deviations from normal gait. Gait & Posture, 2011, 33(4): 730-732.
[21] Schutte L.M., Narayanan U., Stout J.L., Selber P., Gage J.R., Schwartz M.H., An index for quantifying deviations from normal gait, Gait & Posture, 2000, 11(1): 25-31.
[22] Schwartz M., Rozumalski A.: The gait deviation index: A new comprehensive index of gait pathology, Gait & Posture, 2008, 28(3): 351-357.
[23] Stankiewicz D., Kułak W., Buzalska A., Okurowska-Zawada B., Paszko-Patej G., Skale funkcjonalne stosowane u dzieci z mózgowym porażeniem dziecięcym, (w:) Neurologia dziecięca, 2009, 18 (35): 73-78.
[24] Wojnicz W., Wittbrodt E., Analysis of muscles’ behaviour. Part II. The computational model of muscles’ group acting on the elbow joint, Acta of Bioengineering and Biomechanics, 2010, 12(1): 3-10.
[25] Zawadzki J., Siemieński J., Maximal frequency, amplitude, kinetic energy and elbow joint stiffness in cyclic movement, Acta of Bioengineering and Biomechanics, 2010, 12(2): 55-64.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-b08c0158-db09-4279-aa93-dc97ebbf5087
DOI 10.5277/ABB-00698-2016-02