Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Przegląd Elektrotechniczny

Tytuł artykułu

Non-disturbing bidirectional charger for PHEVs and EVs

Autorzy Gallardo-Lozano, J.  Milanés-Montero, M. I.  Guerrero-Martínez, M. A.  Romero-Cadaval, E. 
Treść / Zawartość
Warianty tytułu
PL Nowy dwukierunkowy system ładowania baterii do samochodów elektrycznych
Języki publikacji EN
EN A new algorithm for a bidirectional battery charger for PHEVs (Plug-in Electric Vehicles) and EVs (Electric Vehicles) is proposed. It achieves the battery charging and the Vehicle-to-Grid (V2G) modes, demanding or injecting currents into the grid without harmonics and with unity displacement power factor, regardless of whether the grid voltage is ideal (sinusoidal) or distorted, as the generated reference current is obtained from the fundamental component of the phase-neutral grid voltage, contributing to the concept of Smart Grids. Simulation and experimental results are included to validate the design (topology and its control) of the proposed charger.
PL Zaproponowano nowy algorytm dwukierunkowego układu ładowania baterii dla pojazdów elektrycznych. System zapewnia ładowanie baterii bez wprowadzania zakłóceń do sieci.
Słowa kluczowe
PL ładowanie baterii   pojazdy elektryczne   elektrotechnika   elektroenergetyka  
EN bidirectional charger   battery   EV   V2G   non-disturbance   smart grids   electrical technology   electrical power engineering  
Wydawca Wydawnictwo SIGMA-NOT
Czasopismo Przegląd Elektrotechniczny
Rocznik 2011
Tom R. 87, nr 12a
Strony 111--116
Opis fizyczny Bibliogr. 17 poz., il., tabl., wykr.
autor Gallardo-Lozano, J.
autor Milanés-Montero, M. I.
autor Guerrero-Martínez, M. A.
autor Romero-Cadaval, E.
[1] S. Jaganathan, W. Gao, “Battery Charging Power Electronics Converter and Control for Plug-in Hybrid Electric Vehicle”, IEEE Conference Vehicle Power and propulsion, (2009), pp. 440– 447.
[2] M. Kisacikoblu, B. Ozpineci, L. Tolbert, “Examination of a PHEV Bidirectional Charger System for V2G Reactive Power Compensation”, IEEE Applied Power Electronics Conference and Exposition, (2010), pp. 458–465.
[3] Lixin Tang, Gui-Jia Su, “A Low-Cost, Digitally-Controlled Charger for Plug-In Hybrid Electric Vehicles”, IEEE Energy Conversion Congress and Exposition, (2009), pp. 3923–3929.
[4] I. Cvetkovic, T. Thacker, Dong Dong, G. Francis, V. Podosinov, D. Boroyevich, F. Wang, R. Burgos, G. Skutt, J. Lesko, “Future Home Uninterruptible Renewable Energy System with Vehicle-to-Grid Technology”, IEEE Energy Conversion and Exposition, (2009), pp. 2675–2681.
[5] X. Zhou, S. Lukic, S. Bhattacharya, A. Huang, “Design and Control of Grid-connected Converter in Bi-directional Battery Charger for Plug-in Hybrid Electric Vehicle Application”, IEEE Vehicle Power and Propulsion Conference, (2009), pp. 1716– 1721.
[6] X. Zhou, G. Wang, S. Lukic, S. Bhattacharya, Huang, A., “Multi-Function Bi-directional Battery Charger for Plug-in Hybrid Electric Vehicle Application”, IEEE Energy Conversion Congress and Exposition, (2009), pp. 3930–3936.
[7] Y.-J. Lee, A. Khaligh, A. Emadi, “Advanced Integrated Bidirectional AC/DC and DC/DC Converter for Plug-In Hybrid Electric Vehicles”, IEEE Journals Vehicular Technology, vol. 58 (2009), pp. 3970–3980.
[8] B. Bilgin, E. Dal Santo, M. Krishnamurthy, “Universal Input Battery Charger Circuit for PHEV Applications with Simplified Controller”, IEEE Applied Power Electronics Conference and Exposition (APEC), (2011), pp. 815-820.
[9] M. Ortúzar et. al., “Implementation and Evaluation of an Ultracapacitor-Based Auxiliary Energy System for Electric Vehicles”, IEEE Transactions on Industrial Electronics, vol. 54 (2007), issue 4, pp. 2147-2156.
[10] J. Zhang, S. Ci, H. Sharif, M. Alahmad, “An Enhanced Circuit- Based Model for Single-Cell Battery”. Power Electronics Conference and Exposition (APEC) 2010 Twenty-fifth Annual IEEE, (2010), pp. 672–675.
[11] M. Zheng, B. Qi, X. Du, “Dynamic Model for Characteristics of Li-Ion Battery on electric Vehicle”, 4th IEEE Conference Industrial Electronics and Applications, (2009), pp. 2867–2871.
[12] R. Kroeze, P. Krein, “Electrical Battery Model for Use in Dynamic Electric Vehicle Simulations”, IEEE Conference Power Electronics Specialists, (2008), pp. 1336-1342.
[13] M. Einhorn, V.F. Conte, C. Kral, J. Fleig, R. Permann, “Parameterization of an Electrical Battery Model for Dynamic System Simulation in Electric Vehicles”, IEEE Vehicle Power and Propulsion Conference (VPPC), (2010), p. 1.
[14] Xue-Zhe Wei, XiaoPeng Zhao, YongJun Yuan, “Study of Equivalent Circuit Model for Lead-Acid Batteries in Electric Vehicle”, IEEE Measuring Technology and mechatronics Automation, vol. 2 (2009), pp.685-690.
[15] C. Sen, N. C. Kar, “Battery Pack Modeling for the Analysis of the Battery Management System of a Hybrid Electric Vehicle”, IEEE Vehicle Power and Propulsion Conference, (2009), p. 207.
[16] O. Tremblay, L.-A. Dessaint, A.-I. Dekkiche, “A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles”, IEEE Conference Vehicle Power and Propulsion, (2008), pp. 284–289.
[17] M. Milanés-Montero et. Al., “Novel Method for Synchronization to Disturbed Three-Phase and Single-Phase Systems”, IEEE International Symposium on Industrial Electronics, (2004).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-PWA7-0056-0022