Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-PWA7-0031-0023

Czasopismo

Journal of Mathematics and Applications

Tytuł artykułu

On certain properties of neighborhoods of analytic functions of complex order

Autorzy Latha, S.  Poornima, N. 
Treść / Zawartość http://jma.prz.edu.pl/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Let A(n) denote the class of functions of the form [wzór] which are analytic in the open unit disk U = {z : |z| < 1}. In this note, the subclasses Sn (β, γ, a, c), Rn (β, γ, a, c; μ ), S(sup α) (sub n) (β, γ a, c) and R (sup α) (sub n) (β, γ, a, c; μ ) of A(n)(are defined and some properties of neighborhoods arę studied for functions of complex order in these classes.
Słowa kluczowe
PL funkcja analityczna   funkcja jednolistna   otoczenie   operator liniowy   funlcja wypukła   funkcja gwiaździsta  
EN univalent functions   neighborhoods   linear operator   convex functions   starlike functions  
Wydawca Oficyna Wydawnicza Politechniki Rzeszowskiej
Czasopismo Journal of Mathematics and Applications
Rocznik 2008
Tom Vol. 30
Strony 83--90
Opis fizyczny Bibliogr. 8 poz.
Twórcy
autor Latha, S.
autor Poornima, N.
  • Department of Mathematics and Computer Science Maharaja's College University of Mysore Mysore - 570005, INDIA, drlatha@gmail.com
Bibliografia
[1] O. Altintas and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math, and Math. Sci., 19(1996), 797-800.
[2] O. Altintas and Ö. Özkan and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13(3)(2000), 63-67.
[3] O. Altintas and Ö.Özkan and H. M. Srivastava; Majorization by starlike functions of complex order, Complex Variable Theory Appl, 46(2001), 207-218.
[4] O. Altintas and Ö.Özkan and H. M. Srivastava, Neighborhoods of a certain family of multivalent functions with negative coefficients, Comput. Math. Appl., 47(2004).
[5] O. Altintas and H. M. Srivastava, Some Majorization problems associated with p-valently starlike and convex functions of complex order, East. Asian. Math. J., 17(2001), 175-183.
[6] P. L. Duren, Univalent functions, Springer-Verlag, 1983.
[7] G. Murugusundaramoorthy and H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, Journal of Inequalities in Pure and Applied Mathematics ,Volume 5, Issue 2, Article 24, 2004.
[8] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(1981), 521-527.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-PWA7-0031-0023
Identyfikatory