Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-PWA7-0031-0003

Czasopismo

Journal of Mathematics and Applications

Tytuł artykułu

On certain subclasses of meromorphically multivalent functions associated with a certain linear operator

Autorzy Aouf, M. K.  Murugusundaramoorthy, G. 
Treść / Zawartość http://jma.prz.edu.pl/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In this paper we introduce and study two subclasses (Rn,p(α, A, B)) and Sn,p(α, A, B)) of meromorphic p-valent functions of order α (0 ≤ α < p) defined by certain linear operator. We investigate the various important properties and characteristics of these subclasses. Some properties of neighborhoods of functions in these subclasses are investigated. Also we derive many interesting results for the Hadamard products of functions belonging to the class Sn,p(α, A, B).
Słowa kluczowe
PL operator liniowy   funkcja meromorficzna   splot Hadamarda   iloczyn Hadamarda   otoczenie funkcji  
EN linear operator   meromorphic functions   Hadamard product   neighborhoods  
Wydawca Oficyna Wydawnicza Politechniki Rzeszowskiej
Czasopismo Journal of Mathematics and Applications
Rocznik 2007
Tom Vol. 29
Strony 33--52
Opis fizyczny Bibliogr. 32 poz.
Twórcy
autor Aouf, M. K.
autor Murugusundaramoorthy, G.
  • Department of Mathematics Faculty of Science Mansoura University Mansoura 35516, Egypt
Bibliografia
[1] O. Altintas and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math. Math. Sci. 19 (1996), 797-800.
[2] O. Altintas, O. Ozkan and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (2000), no. 3, 63-67.
[3] O. Altintas, O. Ozkan and H. M. Srivastava, Neighborhoods of certain family of multivalent functions with negative coefficients, Comput. Math. Appl. 47 (2004), 1667-1672.
[4] M. K. Aouf, On a dass of meromorphic multivalent functions with positive coefficients, Math. Japon. 35 (1990), 603-608.
[5] M. K. Aouf, A generalization of meromorphic multivalent functions with positive coefficients, Math. Japon. 35 (1990), 609-614.
[6] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. 7(11) (1991), 209-219.
[7] M. K. Aouf and H. M. Hossen, New criteria for meromorphic p-valent starlike functions, Tsukuba J. Math. 17 (1993), 481-486.
[8] M. K. Aouf and H. E. Darwish, Certain classes of meromorphic univalent functions with positive coefficients, Nihonkai Math. J. (1993), 181-199.
[9] M. K. Aouf, H. M. Hossen and H. E. Elattar, A certain class of meromorphic multivalent functions with positive and fixed second coefficients, Punjab Univ. J. Math. 33 (2000), 115-124.
[10] M.-P. Chen, H. Irmark and H. M. Srivastava, Some families of multivalently analytic functions with negative coefficients, J. Math. Anal. Appl. 214 (1997), 674-690.
[11] N. E. Cho, On certain class of meromorphic functions with positive coefficients, J. Inst. Math. Comput. Sci. (Math. Ser.) 3 (1990), no. 2, 119-125.
[12] N. E. Cho, S. H. Lee and S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4 (1987), 43-50.
[13] N. E. Cho and S. Owa, On certain classes of meromorphically p-valent starlike function, In New Developments in Univalent Function Theory, Special Issue of Surikaisekikenkyusho Kokyuroku, (Edited by S. Owa), 821 (1993), 159-165.
[14] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 898-901.
[15] I. S. Jack, Functions starlike and convex functions of order ?, J. London Math. Soc. 2 (1971), no. 3, 469-474.
[16] S. B. Joshi and M. K. Aouf, Meromorphic multivalent functions with positive and fixed second coefficients, Kyungpook Math. J. 35 (1995), 163-169.
[17] S. B. Joshi and H. M. Srivastava, A certain family of meromorphically multivalent functions, Comput. Math. Appl. 38 (3-4) (1999), 201-211.
[18] S. R. Kulkarni, U. H. Naik and H. M. Srivastava, A certain class of meromorphically p-valent quasi-convex functions, PanAmerican Math. J. 8 (1998), no. 1, 57-64.
[19] J.-L. Liu, Properties of some families of meromorphic p-valent functions, Math. Japon. 52 (2000), no. 3, 425-434.
[20] J.-L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2000), 566-581.
[21] J.-L. Liu and H. M. Srivastava, Some convolution conditions for starlikeness and convexity of meromorphically multivalent functions, Appl. Math. Lett. 16 (2003), no. l, 13-16.
[22] J.-L. Liu and H. M. Srivastava, Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Modelling 39 (2004), 35-44.
[23] M. L. Mogra, Meromorphic multwalent functions with positive coefficients. I, Math. Japon. 35 (1990), no. l, 1-11.
[24] M. L. Mogra, Meromorphic multivalent functions with positive coefficients. II, Math. Japon. 35 (1009), no. 6, 1089-1098.
[25] S. Owa, H. E. Darwish and M. K. Aouf, Meromorphic multivalent functions with positiwe and fixed second coefficients, Math. Japon. 46 (1997), no. 2, 231-236.
[26] R. K. Raina and H. M. Srivastava, A new class of meromorphically multivalent functions with applications to generalized hypergeometric functions, Math. Comput. Modelling 43 (2006), 350-356.
[27] St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-527.
[28] A. Schild and H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 29 (1975), 99-107.
[29] H. M. Srivastava, H. M. Hossen and M. K. Aouf, A unified presentation of some classes of meromorphically multivalent functions, Comput. Math. Appl. 38 (1999), 63-70.
[30] B. A. Uralegaddi and M. D. Ganigi, Meromorphic multivalent functions with positive coefficients, Napali Math. Sci. Rep. 11 (1986), no. 2, 95-102.
[31] B. A. Uralegaddi and C. Somanatha, Certain classes of meromorphic multivalent functions, Tamkang J. Math. 23 (1992), 223-231.
[32] D.-G. Yang, On new subclasses of meromorphic p-valent functions, J. Math. Res. Exposition 15 (1995), 7-13.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-PWA7-0031-0003
Identyfikatory