Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-PWA6-0040-0007

Czasopismo

Prace Naukowe Politechniki Warszawskiej. Elektronika

Tytuł artykułu

Multisequence Alignment as a new tool for network traffic analysis

Autorzy Fabjański, K.  Kozakiewicz, A.  Felkner, A.  Kijewski, P.  Kruk, T. 
Treść / Zawartość
Warianty tytułu
Konferencja Evolutionary Computation and Global Optimization (10; Krajowa Konferencja Algorytmy Ewolucyjne i Optymalizacja Globalna; 11-13.06.2007; Będlewo, Poland)
Języki publikacji EN
Abstrakty
EN This article presents a multiple sequence alignment as a method used for problems of motif finding [13] in network traffic collection. Based on multisequence alignment we will present two bioinformatics approaches for finding longest common subsequence (LCS) [14] of network traffic signatures collection. the article starts from presenting the description of pairwise alignment algorithms, goes through the examples of its implementation and then comes to the part related to bioinformatics methods. At the end, some preliminary results concerning Center Star method will be presented.
Słowa kluczowe
EN network traffic analysis   multiple sequence alignment  
Wydawca Oficyna Wydawnicza Politechniki Warszawskiej
Czasopismo Prace Naukowe Politechniki Warszawskiej. Elektronika
Rocznik 2007
Tom z. 160
Strony 59--70
Opis fizyczny Bibliogr. 25 poz., tab., wykr.
Twórcy
autor Fabjański, K.
autor Kozakiewicz, A.
autor Felkner, A.
autor Kijewski, P.
autor Kruk, T.
Bibliografia
[1] Arakis. www.arakis.pl.
[2] Bioinformatics multiple sequence alignment. homepages.inf.ed.ac.uk/fgeerts/course/msa.pdf.
[3] Multiple alignment: heuristics. www.bscbioinformatics.com/Stu/Dbq/clustalW.pdf.
[4] Neighbor joining. http://www.cs.tau.ac.il/~rshamir/algmb/98/scribe/html/lec09/node23.html.
[5] The neighbor-joining method. http://www.icp.ucl.ac.be/~opperd/private/neighbor.html.
[6] Sequence alignment. http://helix.biology.mcmaster.ca/721/outline2/node37.html.
[7] Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence algorithms. In String Processing Information Retrieval, 7th International Symposium, SPIRE'00, La Coruna, Spain, 27-29 September 2000, Proceedings, pages 39-48, Washington, DC, 2000. IEEE Computer Society.
[8] Scott Coull, Joel Branch, Boleslaw Szymanski, and Eric Breimer. Intrusion detection: A bioinformatics approach. In Proceedings of the 19th Annual Computer Security Applications Conference, page 24,Washington, DC, USA, 2003. IEEE Computer Society.
[9] Debin Gao, Michael K. Reiter, and Dawn Song. Behavioral distance for intrusion detection. In In Proceedings of the 8th International Symposium on Recent Advances in Intrusion Detection (RAID 2005), 2005.
[10] Debin Gao, Michael K. Reiter, and Dawn Song. Behavioral distance measurement using hidden markov models. In In Proceedings of the 9th International Symposium on Recent Advances in Intrusion Detection (RAID 2006), 2006.
[11] Ronald I. Greenberg. Bounds on the number of longest common subsequences, 2003.
[12] D. Gusfield. Efficient method for multiple sequence alignment with guaranteed error bounds. Report CSE-91-4, Computer Science Division, University of California, Davis, 1991.
[13] Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.
[14] Dan Hirschberg. A linear space algorithm for computing common subsequences. Communication of the ACM, 18:341-343, 1975.
[15] Christian Kreibich. Honeycomb. Automated signature creation using honeypots - http://www.icir.org/christian/honeycomb/index.html.
[16] Christian Kreibich and Jon Crowcroft. Honeycomb - creating intrusion detection signatures using honeypots. In Proceedings of the Second Workshop on Hot Topics in Networks (Hotnets II). Cambridge Massachusetts: ACM SIGCOMM, Boston, November 2003.
[17] Christian Kreibich and Jon Crowcroft. Efficient sequence alignment of network traffic. In IMC'06: Proceedings of the 6th ACM SIGCOMM on Internet measurement, pages 307-312, New York, NY, USA, 2006. ACM Press.
[18] Paolo Pin Matteo Barigozzi. Multiple string alignment. 2003.
[19] James Newsome, Brad Karp, and Dawn Song. Polygraph - automatically generating signatures for polymorphic worms. In SP'05: Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages 226-241, Washington, DC, USA, 2005. IEEE Computer Society.
[20] C. Notredame, D.G. Higgins, and J. Heringa. T-coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol, 302(1):205-17, 2000.
[21] S. W. Perrey, J. Stoye, V. Moulton, and A. W. M. Dress. On simultaneous versus iterative multiple sequence alignment. Materialien/Preprints 111, Universität Bielefeld, Forschungsschwerpunkt Mathematisierung - Strukturbildungsprozesse, 1997.
[22] Knut Reinert. Introduction to multiple sequence alignment. Algorithmische Bioinformatik WS 03, pages 1-30, 2005.
[23] N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4(4):406-25, 1987.
[24] Yong Tang and Shigang Chen. Defending against internet worms: A signature-based approach. In Proceedings of the 24th Annual Conference IEEE INFOCOM 2005, March 2005.
[25] Zhiping Weng. Protein and dna sequence analysis be561, 2005. Boston University.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-PWA6-0040-0007
Identyfikatory