Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-PWA5-0018-0016

Czasopismo

Demonstratio Mathematica

Tytuł artykułu

Boundedness of superposition operators on some sequence spaces defined by moduli

Autorzy Molder, A. 
Treść / Zawartość https://www.degruyter.com/view/j/dema
Warianty tytułu
Języki publikacji EN
Abstrakty
EN For a solid sequence space lambda and a sequence of modulus functions fi = (phik) let lambda(fi) = {x = (xk) : (phik(|xk|)) is an element of lambda}. Provided another solid sequence space ž and a sequence of modulus functions psi= psi(k), we give necessary and sufficient conditions for the local boundedness and boundedness of superposition operators Pf from lambda(fi)) into ž(psi) for some Banach sequence spaces lambda and ž under the assumptions that topologies on the sequence spaces lambda(fi) and ž(psi) are given by certain F-norms. As applications we characterize bounded superposition operators on some multiplier sequence spaces of Maddox type.
Słowa kluczowe
PL przestrzeń ciągu   operatory superpozycyjne   funkcja modułowa  
EN sequence space   superposition operators   modulus function   local boundedness  
Wydawca De Gruyter
Czasopismo Demonstratio Mathematica
Rocznik 2006
Tom Vol. 39, nr 4
Strony 869--886
Opis fizyczny Bibliogr. 14 poz.
Twórcy
autor Molder, A.
Bibliografia
[1] F. Dedagich, P. P. Zabreiko, On superposition operators in lp spaces, Sibirsk. Mat. Zh. 28 (1987), no.1, 86–98 (Russian); English translation: Siberian Math. J. 28 (1987), no. 1, 63–73.
[2] K.-G. Grosske-Erdmann, The structure of the sequence spaces of Maddox, Canad. J. Math. 44 (1992), 298–302.
[3] Mushir A. Khan, Qamaruddin, Some generalized sequence spaces and related matrix transformations, Far East J. Math. Sci. 5 (1997), 243–252.
[4] E. Kolk, Inclusion theorems for some sequence spaces defined by a sequence of moduli , Tartu Ül. Toimetised 970 (1994), 65–72.
[5] E. Kolk, F-seminormed sequence spaces defined by a sequence of modulus functions and strong summability, Indian J. Pure Appl. Math. 28 (1997), 1547–1566.
[6] E. Kolk, Superposition operators on sequence spaces defined by ?-functions, Demonstratio Math. 37 (2004), 159–175.
[7] E. Kolk, A. Mölder, The continuity of superposition operators on some sequence spaces defined by moduli , Czechoslovak Math. J. (submitted).
[8] Y. Luh, Die Räume l(p), l1(p), c(p), c0(p), w(p), w0(p) und w1(p), Mitt. Math. Sem. Giessen 180 (1987), 35–57.
[9] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100 (1986), 161–166.
[10] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200–211.
[11] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973–978.
[12] A. Sama-ae, Boundedness and continuity of superposition operator on Er(p) and Fr(p), Songklanakarin J. Sci. Technol. 24 (2002), 451–466.
[13] V. Soomer, On the sequence space defined by a sequence of moduli and on the ratespace, Acta Comment. Univ. Tartuensis Math. 1 (1996), 71–74.
[14] S. Suantai, Boundedness of superposition operators on Er and Fr, Comment. Math. Prace Mat. 37 (1997), 249–259.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-PWA5-0018-0016
Identyfikatory