Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-PWA5-0018-0014

Czasopismo

Demonstratio Mathematica

Tytuł artykułu

Coincidence point for noncompatible multivalued maps satisfying implicit relation

Autorzy Kubiaczyk, I.  Deshpande, B. 
Treść / Zawartość https://www.degruyter.com/view/j/dema
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In this paper we prove a common coincidence point theorem for single- valued and multivalued mappings satisfying an implicit relation under the condition of R-weak commutativity on metric spaces.
Słowa kluczowe
PL relacja uwikłana   odwzorowania   teoria wspólnych punktów  
EN implicit relation   mappings   coincidence point theorem   R-subweakly commuting map  
Wydawca De Gruyter
Czasopismo Demonstratio Mathematica
Rocznik 2006
Tom Vol. 39, nr 4
Strony 855--862
Opis fizyczny Bibliogr. 18 poz.
Twórcy
autor Kubiaczyk, I.
autor Deshpande, B.
  • Faculty of Mathematics and Computer Science Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland, kuba@amu.edu.pl
Bibliografia
[1] A. Azam and I. Beg, Coincidence points of compatible multivalued mappings, Demonstratio Math. 29 (1996), 17–22.
[2] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), 771–779.
[3] H. Kaneko, S. Sessa, Fixed point theorem for compatible multivalued and single-valued mappings, Internat. J. Math. Math. Sci. 12 (1989), 257–262.
[4] S. Krzyska and I. Kubiaczyk, Fixed point theorems for upper semicontinuous and weakly-weakly upper semicontinuous multivalued mappings, Math. Japonica 47, No. 2 (1988), 237–240.
[5] S. B. Nadler, Jr. Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475–488.
[6] R. P. Pant, Common fixed points of non-commuting mappings, J. Math. Anal. Appl. 188 (1994), 436–440.
[7] R. P. Pant, Common fixed point theorems for contractive maps, J. Math. Anal. Appl. 226 (1998), 251–258.
[8] R. P. Pant, Common fixed points of Lipschitz type mappings pair, J. Math. Anal. Appl. 240 (1999), 280–283.
[9] R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284–294.
[10] V. Popa, On unique common fixed point for compatible mappings of type (A), Demonstratio Math. 30 (4) (1997), 931–936.
[11] V. Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math. 33 (1) (2000), 159–164.
[12] V. Popa and H. K. Pathak, Common fixed points of compatible mappings, Demonstratio Math. 26 (1993), 803–809.
[13] S. Sessa, On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. 32 (1982), 149–153.
[14] S. Sessa and M. S. Khan, Some remarks in best approximation theory, Math. J. Toyoma Univ. 17 (1994), 151–165.
[15] N. Shahzad and T. Kamran, Coincidence points and R-weakly commuting maps, Archiv. Math. (Brno) Tomus 37 (2001), 179–183.
[16] S. Sharma and B. Deshpande, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J. Math. 33 (3) (2002), 245–252.
[17] S. Sharma and B. Deshpande, Compatible Multivalued Mappings Satisfying an Implicit Relation, South Asian Bull. Math. Springer-Verlag (Accepted for publication).
[18] S. L. Singh and S. L. Mishra, Coincidence and fixed points of non-self hybrid contractions, J. Math. Anal. Appl. 256 (2001), 486–497.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-PWA5-0018-0014
Identyfikatory