Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-PWA5-0018-0005

Czasopismo

Demonstratio Mathematica

Tytuł artykułu

A generalizatio of injectivity for modules over a unitary ring

Autorzy Ming, R. 
Treść / Zawartość https://www.degruyter.com/view/j/dema
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In this note, we consider certain generalizations of injectivity and p-injectivity in connection with von Neumann regular rings, self-injective regular rings, I-regular rings, semi-simple Artinian and simple Artinian rings. A generalization of quasi-injective modules, noted SCS modules, is introduced. It is proved that A is a left self injective regular ring if, and only if, A is a left p-injective left non-singular left SCS ring. SCS rings are used to characterize simple Artinian rings. A generalization of p-injective modules, noted WGP-injective is used to study I-regular rings. If A is a right p.p. right WGP-injective ring, then A is I-regular. If A is a semi-prime ring whose simple left modules are either WGP-injective or projective, then the centre of A is von Neumann regular. Left Artinian rings are characterized as left Noetherian rings whose prime factor rings are left WGP-injective. Also, A is a left WGP-injective ring if and only if for any a is an element of A , there exists a positive integer n such that an A is a right anihilator. (Here an may be zero.)
Słowa kluczowe
PL odwzorowania   moduły SCS   pierścień unitarny   pierścienie Artiniana   pierścienie VNR  
EN injectivity   SCS modules   unitary ring   Artinian rings   VNR rings  
Wydawca De Gruyter
Czasopismo Demonstratio Mathematica
Rocznik 2006
Tom Vol. 39, nr 4
Strony 759--770
Opis fizyczny Bibliogr. 40 poz.
Twórcy
autor Ming, R.
  • Universite Paris VII-Denis Diderot UFR de Mathamatiques-UMR 9994 CNRS 2, Place Jussieu, 75 251 Paris Cedex 05, France
Bibliografia
[1] M. Auslander, On regular group rings, Proc. Amer. Math. Soc. 8 (1957), 658-664.
[2] G. Baccella, Generalized V-rings and von Neumann regular rings, Rend. Sem. Mat.Univ. Padova 72 (1984), 117-133.
[3] S. U. Chase, Direct product of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473.
[4] J. L. Chen and N. Q. Ding, On regularity of rings, Algebra Colloq. 8 (2001), 267-274.
[5] J. L. Chen, Y. Q. Zhou and Z. M. Zhu, GP-injective rings need not be P-injective, Comm. Algebra 32 (2004), 1-9.
[6] C. Faith, Algebra II: Ring Theory, Springer-Verlag, 1976.
[7] C. Faith, Rings and Things and a Fine Array of Twentieth Century Associative Algebra, AMS Math. Surveys and Monographs 65 (1999).
[8] L. Fuchs and L. Salce, Modules over Valuation Domains, Marcel Dekker, Basel and New York, 1985.
[9] K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Marcel Dekker, 1976.
[10] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
[11] M. Harada, A note on the dimension of modules and algebras, J. Inst. Polytech. Osaka City U. 7 (1956), 17-28.
[12] Y. Hirano, On non-singular p-injective rings, Publ. Math. 38 (1994), 445-461.
[13] C. Y. Hong, N. Kim and Y. Lee, On rings whose homomorphic images are p-injective, Comm. Algebra 30 (2002), 261-271.
[14] S. K. Jain, S. H. Mohamed and S. Singh, Rings in which every right ideal is quasi-injective, Pacific J. Math. 31 (1969), 73-79.
[15] J. P. Jans, Projective injective modules, Pacific J. Math. 9 (1959), 1103-1108.
[16] R. E. Johnson and L. S. Levy, Regular elements in semi-prime rings, Proc. Amer. Math. Soc. 19 (1968), 961-963.
[17] F. Kasch, Modules and Rings, LMS Monograph 17 (1982).
[18] N. K. Kim, S. B. Nam and J. Y. Kim, On simple singular GP-injective modules, Comm. Algebra 27 (1999), 2087-2097.
[19] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, LMS Lecture Note Series 147 (C.U.P.) (1990).
[20] S. B. Nam, N. K. Kim and J. Y. Kim, On simple GP-injective modules. Comm. Algebra 23 (1995), 5437-5444.
[21] G. Puninski, R. Wisbauer and M. Yousif, On p-injective rings, Glasgow Math. J. 37 (1995), 373-378.
[22] A. A. Tuganbaev, Rings Close to Regular, Kluwer Acad. Publishers 545 (2002).
[23] A. A. Tuganbaev, Max Rings and V-Rings, Handbook of Algebra, Vol. 3, Elsevier, 2003.
[24] Y. Utumi, On continuous regular rings and semi-simple self-injective rings, Canad. J. Math. 12 (1960), 597-605.
[25] D. G. Wang, Rings characterized by injectivity classes, Comm. Algebra 24 (1996), 717-726.
[26] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.
[27] W. M. Xue, A note on YJ-injectivity, Riv. Mat. Univ. Parma (6) 1 (1998), 31-37.
[28] M. F. Yousif, SI-modules, Math. Okayama Univ. 28 (1986), 133-146.
[29] R. Yue Chi Ming, On Von Neumann regular rings, Proc. Edinburgh Math. Soc. 19 (1974), 89-91.
[30] R. Yue Chi Ming, On Von Neumann regular rings, II, Math. Scand. 39 (1976), 167-170.
[31] R. Yue Chi Ming, On regular rings and self-injective rings, Monatsh. Math. 91 (1981), 153-166.
[32] R. Yue Chi Ming, On Von Neumann regular rings, VI, Rend. Sem. Mat. Univ. Torino 39 (1981), 75-84.
[33] R. Yue Chi Ming, On V-rings and unit-regular rings, Rend. Sem. Mat. Univ. Padova 64 (1981), 127-140.
[34] R. Yue Chi Ming, On Von Neumann regular rings, X, Collec. Math. 34 (1983), 81-94.
[35] R. Yue Chi Ming, On regular rings and Artinian rings, II, Riv. Mat. Univ. Parma (4) 11 (1985), 101-109.
[36] R. Yue Chi Ming, Annihilators and strongly regular rings, Rend. Sem Fac. Sci. Cagliari 57 (1987), 51-59.
[37] R. Yue Chi Ming, On annihilator ideals, IV, Riv. Univ. Parma (4) 13 (1987), 19-27.
[38] R. Yue Chi Ming, On strongly regular rings, Rev. Roumaine Math. Pures Appl. 38 (1993), 281-287.
[39] R. Yue Chi Ming, On p-injectivity and generalizations, Riv. Mat. Univ. Parma (5) 5 (1996), 183-188.
[40] J. L. Zhang and J. Wu, Generalizations of principal injectivity, Algebra Colloq. 6 (1999), 277-282.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-PWA5-0018-0005
Identyfikatory