PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of human tissue for medical purposes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the possibilities offered for medicine by modeling of human tissue using virtual and augmented reality. It also presents three proposals of breast modeling for the use in clinical practice. These proposals are the result of arrangements of medical and computer scientists team (the authors) and will be pursued and implemented in the near future. There is included also a brief description of the most popular methods for modeling of human tissue: spring-mass model and finite element method. Moreover the paper attempts to estimate the benefits of the developed models.
Rocznik
Tom
Strony
43--48
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
  • Gdańsk University of Technology, Department of Intelligent Interactive Systems
autor
Bibliografia
  • [1] ABATE A. F., NAPPI M., RICCIARDI S. AR Based Environment for Exposure Therapy to Mottephobia. in R. Shumaker (Ed.), Virtual and Mixed Reality, 2011, Part 1, LNCS 6773.
  • [2] ALLARD J., COTIN S., FAURE F., BENSOUSSAN P. J., POYER F., DURIEZ C., DELINGETTE H., GRISONI L., Sofa – an open source framework for medical simulation. Medicine Meets VR, 2007, pp. 13-18.
  • [3] Allergan, Inc.: The Natrelle Breast Implant Simulator. http://www.natrelle.com/simulator.aspx .
  • [4] BALANIUK R., COSTA I., MELO J., Cosmetic Breast Surgery Simulation. Annals of the VIII Symposium on Virtual Reality, 2006, pp. 387-396.
  • [5] BIANCHI G., Exploration of Augmented Reality Technology for Surgical Training Simulators. PhD thesis. Swiss Federal Institute of Technology, 2006, Zurich.
  • [6] BURDEA G. C., COIFFET P., Virtual Reality Technology (2nd Ed.). Wiley-Interscience 2003.
  • [7] CARTER T. J., SERMESANT M., CASH D. M., BARRATT D. C., TANNER C., HAWKES D. J., Application of soft tissue modelling to image-guided surgery. Medical Eng. & Physics 27(10), 2005, pp. 893-909.
  • [8] CHEN D. T., KAKADIARIS I. A., MILLER M. J., LOFTIN R. B., PATRICK C., Modeling for Plastic and Reconstructive Breast Surgery. Proc. of Medical Image Computing and Computer-Assisted Intervention, MICCAI 2000, LNCS 1935, 2000, pp. 1040-1050.
  • [9] COLES T. R., Investigating Augmented Reality Visio-Haptic Techniques for Medical Training. PhD thesis. Bangor University 2011.
  • [10] COMAS O., TAYLOR Z. A., ALLARD J., OURSELIN S., COTIN S., PASSENGER J., Efficient nonlinear FEM for soft tissue modelling and its GPU implementation within the open source framework SOFA. Proc. of the Intern.. Symp. on Comp. Models for Biomed. Simul., 2008
  • [11] COTIN S., DELINGETTE H., AYACHE N., Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions On Visualization and Computer Graphics 5 (1), 1999, pp. 62-73.
  • [12] FELIPPA C. A., A systematic approach to the element independent corotational dynamics of finite elements. Technical Report CU-CAS-00-03, Center for Aerospace Structures, 2000.
  • [13] HARDERS M., Surgical Scene Generation for VR-Based Training in Medicine. Springer 2008.
  • [14] KIM Y., LEE K., KIM W., 3D virtual simulator for breast plastic surgery. Journal Computer Animation and Virtual Worlds – CASA'2008 Special Issue 19 (3-4), September 2008, pp. 515-526.
  • [15] KOZIERKIEWICZ A., BOCHENEK T., GILEWSKI D., TOPÓR-MĄDRY R., Biała Księga. Zwalczanie raka jelita grubego i raka piersi w Polsce na tle wybranych krajów europejskich. Ośr. An. Uniw. 2011.
  • [16] KUZORA P.: System analizy chodu człowieka dla potrzeb diagnostyki szpotawości kolan ORT. Praca dyplomowa magisterska, Politechnika Gdańska 1995.
  • [17] LIU A., TENDICK F., CLEARY K., KAUFMANN C., A Survey of Surgical Simulation: Applications, Technology, and Education. Presence: Teleoper. Virtual Environ. 12(6), 2003, pp. 599-614.
  • [18] MANNINO M., YARNOLD J., Effect of breast-duct anatomy and wound-healing responses on local tumour recurrence after primary surgery for early breast cancer. Lancet Oncol 2009; 10, pp. 425-429.
  • [19] MILLER K., TAYLOR Z., NOWINSKI W. L., Towards computing brain deformations for diagnosis, prognosis and neurosurgical simulation. J. of Mechanics in Med. and Biol. 5(1), 2005, pp. 105-121.
  • [20] MILLER K., JOLDES G., LANCE D., WITTEK A., Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Communications in Numerical Methods in Engineering 23(2), 2007, pp. 121-134.
  • [21] Picinbono G., Delingette H., Ayache N., Non-linear anisotropic elasticity for realtime surgery simulation. Graphical Models 65, 2003, pp. 305-321.
  • [22] PRICE M., ANDERSON P., ROTHBAUM B. O., Virtual reality as treatment for fear of flying: a review of recent research. International Journal of Behavioral Consultation and Therapy 2008.
  • [23] ROOSE L., DE MAERTELEIRE W., MOLLEMANS W., SUETENS P., Validation of different soft tissue simulation methods for breast augmentation. Proc. of the 19th International Congress and Exhibition CARS 2012, Computer Assisted Radiology and Surgery, Elsevier International Congress Series 1281, 2005, pp. 485- 490.
  • [24] SHERMAN W. R., CRAIG A. B., Understanding Virtual Reality: Interface, Application, and Design. Morgan Kaufmann, San Francisco 2003.
  • [25] SKOKOWSKI J., Schorzenia piersi. http://www.skokowski.pl/schorzenia-piersi.html.
  • [26] SZEKELY G., BRECHBÜHLER C., HUTTER R., RHOMBERG A., IRONMONGER N., SCHMID P., Modelling of soft tissue simulation for laparscopic surgery simulation. Medical Image Anal. 4, 2000, pp. 57-66.
  • [27] TANNER C., SCHNABEL J. A., HILL D. L. G., HAWKES D. J., LEACH M. O., HOSE D. R., Factors influencing the accuracy of biomechanical breast models. Med. Physics 33(6), 2006, pp. 1758-1769.
  • [28] TAYLOR Z. A., MILLER K., Constitutive modelling of cartilaginous tissues: A review. Journal of Applied Biomechanics 22(3), 2006, pp. 212-229.
  • [29] TAYLOR Z., CHENG M., OURSELIN S., Real-time nonlinear finite element analysis for surgical simulation using graphics processing units. MICCAI 2007, Part I, LNCS 4791, 2007, pp. 701-708.
  • [30] TAYLOR Z., CHENG M., OURSELIN S., High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans. on Med. Imaging 27(5), 2008, pp. 650-663.
  • [31] Wallach H. S., Safir M. P., Bar-Zvi M., Virtual Reality Cognitive Behavior Therapy for Public Speaking Anxiety: A Randomized Clinical Trial. Behav Modif, May 1, 2009; 33(3), pp. 314-338.
  • [32] WITTEK A., MILLER K., KIKINIS R., WARFIELD S.K., Patient-specific model of brain deformation: Application to medical image registration. Journal of Biomechanics 40(4), 2007, pp. 919-929.
  • [33] WU J., BÜRGER K., WESTERMANN R., DICK C., Interactive Residual Stress Modeling for Soft Tissue Simulation. Eurographics Workshop on Visual Computing for Biology and Medicine, 2012 (to appear), see also site: http://wwwcg.in.tum.de/research/research/projects/real-time-biomedical-computing.html .
  • [34] WU W., HENG P., An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Computer Animation and Virtual Worlds 21 (8-10), 2005, pp. 707-716.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0028-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.