Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Common fixed point, best approximation and generalized f-weak contraction multivalued mapping in p-normed spaces

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
We establish coincidence point and common fixed point results for multivalued f-weak contraction mappings which assume closed values only. As an application, related common fixed point and invariant approximation are obtained in the setup of certain metrizable topological vector spaces. Our results provide extensions as well as substantial improvements of several well known results in the literature.
Opis fizyczny
Bibliogr. 22 poz.
  • [1] M. Abbas, N. Hussain and B. E. Rhoades, Coincidence point theorems for multivalued f -weak contraction mappings and applications, submitted.
  • [2] M. A. Al-Thagafi, Common fixed points and best approximation, J. Approx. Theory 85 (1996), 318-320.
  • [3] M. A. Al-Thagafi and N. Shahzad, Noncommuting self maps and invariant approximations, Nonlinear Anal. 64 (2006), 2778-2786.
  • [4] M. A. Al-Thagafi and N. Shahzad, Coincidence points, generalized I - nonexpansive multimaps and applications, Nonlinear Anal. (in press).
  • [5] M. Berinde and V. Berinde, On general class of multivalued weakly Picard mappings, J. Math. Anal. Appl. (in press).
  • [6] N. Hussain and G. Jungck, Common fixed point and invariant approximation results for noncommuting generalized (f,g)-nonexpansive maps, J. Math. Anal. Appl. 321 (2006), 851-861.
  • [7] N. Hussain and B. E. Rhoades, C,q-commuting maps and invariant approximations, Fixed Point Theory and Appl. (2006), 1-9.
  • [8] G. Jungck, Common fixed points for commuting and compatible. maps on compacta, Proc. Amer. Math. Soc. 103 (1988), 977-983.
  • [9] G. Jungck, Coincidence and Fixed points for compatible and relatinely nonexpansive maps, Int. J. Math. Math. Sci. 16 (1993), 95-100.
  • [10] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998), 227-238.
  • [11] G. Jungck and S. Sessa, Fixed point theorems in best approximation theory, Math. Japonica. 42 (1995), 249-252.
  • [12] T. Kamran, Multivalued f-weakly Picard mappings, Nonlinear Anal. (in press).
  • [13] A. R. Khan, F. Akbar, N. Sultana and N. Hussain, Coincidence and invariant approximation theorems for generalized f-nonexpansive multivalued mappings, Int. J. Math. Math. Sci. 2006 (2006), 18 pp.
  • [14] L. A. Khan and A. R. Khan, An extension of Brosowski-Meinardus theorem on invariant approximation, Approx. Theory and Appl. 11 (4) (1995), 1-5.
  • [15] G. Kothe, Topological Vector Spaces I, Springer-Verlag, Berlin, 1969.
  • [16] A. Latif and A. Bano, A result on invariant approximation, Tanikang J. Math. 33 (2002), 89-92.
  • [17] A. Latif and I. Tweddle, On multivalued nonexpansive maps, Demonstratio. Math. 32 (1999), 565-574.
  • [18] B. E. Rhaodes, On multivalued f-nonexpansive maps, Fixed Point Theory Appl. 2 (2001), 89-92.
  • [19] W. Rudin, Functional Analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1991.
  • [20] S. A. Sahab, M. S. Khan and S. Sessa, A result in best approximation theory, J. Approx. Theory 55 (1988), 349-351.
  • [21] N. Shahzad, Invariant approximation and R-subweakly commuting maps, J. Math. Anal. Appl. 257 (2001), 39-45.
  • [22] N, Shahzad and N. Hussain, Deterministic and random coincidence point results for f-nonexpansive maps, J. Math. Anal. Appl. 323 (2006), 1038-1046.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.