PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indecomposable weak multiplication modules over Dedekind domains

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let R be a Dedekind domain. We classify all indecomposable weak multiplication R-modules and we establish a connection between the weak multiplicatin modules, the pure multiplication modules and the pure-injective modules over such domains.
Wydawca
Rocznik
Strony
33--43
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
Bibliografia
  • [1] I. Assen, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebra, Vol. 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York, 2006.
  • [2] A. Azizi, Weak multiplication modules, Czech. Math. J. 53 (2003), 529-536.
  • [3] A. Baniard, Multiplication modules, J. Algebra 71 (1981), 174-178.
  • [4] P. M. Cohn, On the free product of associative rings, Math. Z. 71 (1958), 380-398.
  • [5] J. Dauns, Modules and Rings, Cambridge University Press, Cambridge, 1994.
  • [6] Z. A. El-Bast, P. F. Smith, Multiplication modules, Comm, Algebra 16 (1988), 755-779.
  • [7] S. Ebrahimi Atani, On pure-injective modules over pullback rings, Comm. Algebra 28 (2000), 4037-4069.
  • [8] S. Ebrahimi Atani, On prime modules over pullback rings, Czech. Math. J., 54 (2004), 781-789.
  • [9] S. Ebrahimi Atani, On secondary modules over Dedekind domains, Southeast Asian Bull. Math. 25 (2001), 1-6.
  • [10] S. Ebrahimi Atani and S. Cheol Lee, Multiplication modules over pullback rings (I), Honam Math. J. 1 (2006), 69-81.
  • [11] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. (1952), 327-340.
  • [12] R. Kielpiński. On Γ-pure injective modules. Bull. Polon. Acad. Sci. Math. 15 (1967), 127-131.
  • [13] C. U. Jensen and H. Lenzing, Model Theoretic Algebra With Particular Emphasis on Fields. Modules, Algebra, Logic and Applications, Vol. 2. Gordon and Breach Science Publishers, 1989.
  • [14] C. P. Lu. Prime submodules o f modules, Comment. Math. Univ. St. Paul 33 (1984), 61-69.
  • [15] C. P. Lu, Spectra of modules, Comm. Algebra 23 (1995), 3741-3752.
  • [16] T. Y. Lam, Lectures on Modules and Rings, Springer Verlag, New York, 1998.
  • [17] B. L. MacCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997), 79-103.
  • [18] M. E. Moore, S. J. Smith, Prime and radical submodules of modules over commutatioeńngs, Comm. Algebra 10 (2002), 5037-5064.
  • [19] M. Prest, Model Theory and Modules. London Mathematical Society, Cambridge University Press. Cambridge, 1988.
  • [20] D. Simson, Littsar Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Applications, Vol. 4, Gordon and Breach Science Publishers, Switzerland-Australia, 1992.
  • [21] D. Simson, On representation types of module subcategories and orders, Bull. Pol. Acad. Sci., Math. 41 (1993), 77-93.
  • [22] D. Simson, On Corner type Endo-Wild algebras, J. Pure Appl. Algebra 202 (2005), 118-132.
  • [23] R. B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0047-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.