PL EN

Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

### Existence and uniqueness of solution for initial value problem of first order differential equation involving generalized Lebesgue-Bochner spaces Lp(I,(Xv, II.II))

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a bitopological vector space (X, v, II.II), where (X, v) is a topological vector space, and II.II is a norm defined on X. This paper deals with the existence and uniqueness of solution for initial value problem of first differential equation: (P)( ˙ x(t) = f(t), t is an element of]alpha, beta[ x(alpha) = x1, where the vector valued function f:]alpha,beta[-› X is assumed to be not necessarily in the classical Lebesgue-Bochner space L1(]alpha,beta[, (X, II.II). Here, by the solution of problem (P), we mean a vector valued function x acting from ]alpha,beta[ into X satisfying the conditions: 1) x is absolutely continuous with respect to the norm II.II; 2) x is almost everywhere differentiable on ]alpha,beta[ with respect to the topology v; 3) ˙ x = f(t) almost everywhere on ]alpha,beta[; 4) x(alpha) = x1. For this, we introduce a special class of integrable functions called generalized Lebesgue- Bochner space denoted L1(]alpha,beta[, (Xv, II.II)) containing (in general, strictly containing, [see the example given at the end of the paper]) the classical Lebesgue-Bochner space L1(]alpha,beta[, (X, II.II). Thus, under some conditions on the pair of topologies (v, II.II) , we prove that if f is an element of L1(]alpha,beta[, (Xv,II.II)), then the initial value problem (P) has an unique solution in the above mentioned sense. Finally, we give an example to illustrate the result given in this paper.
Słowa kluczowe
EN
PL
Wydawca
Czasopismo
Rocznik
Strony
303--315
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
autor
autor
autor
• Dynamical System and Optimization Group, Gafo Laboratory Department of Mathematics , Faculty of Science Mohamed First University Oujda, Morocco, Lahrech@sciences.univ-oujda.ac.ma
Bibliografia
•  D. H. Hyers, Pseudo-normed linear spaces and abelian groups, Duke Math. J. 5 (1939), 628-634.
•  S. Lahrech, A. Ouahab, A. Benbrik, A. Mbarki, Some Properties of Sequentially Continuous Linear Mappings Acting in Topological Vector Spaces, accepted for publication in IJPAM. Sofia, Bulgaria, 2005.
•  A. Taylor, D. Lay, Introduction to Functional Analysis, Second Edition. Krieger Publishing Company, Malabar, Florida, 1980.
•  A. N. Kolmogorov, C. V. Fomin, Functional Analysis, Nayka, (1976) (in Russian).
•  J. L. Kelly, T. P. Srinivasan, Measure and Integral, Volume 1. Springer-Verlag, New York, 1988.
•  A. J. Weir, Lebesgue Integration and Measure, Cambridge University Press, 1973.
•  J. Mikusinski, The Bochner Integral, Birkhauser, 1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0034-0005 JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.