Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-PWA3-0022-0019

Czasopismo

Demonstratio Mathematica

Tytuł artykułu

Common fixed point thorems for set-valued mappings

Autorzy Ciric, L. 
Treść / Zawartość https://www.degruyter.com/view/j/dema
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Some common fixed point theorems for a pair of multi-valued non-self mappings in complete convex metric spaces are obtained. Our results generalize some of the known results. In particular, a theorem by Rhoades [15] is generalized and improved.
Słowa kluczowe
PL przestrzeń metryczna   twierdzenie o punkcie stałym   teoria Rhoadesa  
EN metric space   fixed point theorem   Rhoades theorem  
Wydawca De Gruyter
Czasopismo Demonstratio Mathematica
Rocznik 2006
Tom Vol. 39, nr 2
Strony 419--428
Opis fizyczny BIbliogr. 18 poz.
Twórcy
autor Ciric, L.
  • University of Belgrade Faculty of Mechanical Engineering Aleksinackih rudara 12-35, 11 070 Belgrade, Serbia and Montenegro, lciric@afrodita.rcub.bg.ac.yu
Bibliografia
[1] A. Ahmed and A. R. Khan, Some fixed point theorems for non-self hybrid contractions. J. Math. Anal. Appl. 213 (1997), 275-280.
[2] N. A. Assad, Fixed point theorems for set valued transformations on compact sets, Boll. Un. Math. Ital. 4 (1973), 1-7.
[3] N. A. Assad and W. A. Kirk, Fixed point theorems for set valued mappings of contractive type, Pacific J. Math. 43 (1972), 553-562.
[4] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford Press, 1953.
[5] Lj. B. Ćirić, Fixed points for generalized multi-valued mappings, Mat. Vesnik 9 (24) (1972), 265-272.
[6] Lj. B. Ćirić, A remark on Rhoades fixed point theorem for non-self mappings, Internat. J.Math. Math. Sci. 16 (1993), 397-400.
[7] Lj. B. Ćirić Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts 23 (1998), 25-31.
[8] Lj. B. Ćirić, J. S. Ume, M. S. Khan and H. K. Pathak, On some non-self mappings, Math. Nachr. 251 (2003), 28-33.
[9] S. Itoh, Multi-valued generalized contractions and fired point theorems, Comment. Math. Univ. Caroline 18 (1977), 247-258.
[10] M. S. Khan, Common fixed point theorems for multi-valued mappings, Pacific J. Math. 95 (1981), 337-347.
[11] J. T. Markin, A fixed point theorem for set-valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639-640.
[12] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[13] B. K. Ray, On Ćrić's fixed point theorem, Fund. Math. XCIV (1977), 221-229.
[14] B. E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon. 23 (1978), 457-459.
[15] B. E. Rhoades, A fixed point theorem for non-self set-valued mappings, Internat. J. Math. Math. Sci. 20 (1997), 9-12.
[16] A. Rus, Generalized Contractions and Applications, Cluj-Univ. Press, 2001.
[17] K. P. R. Sastry, S. V. R. Naidu and J. R. Prasad, Common fixed points for multi-maps in a metric space, Nonlinear Anal. T. M. A. 13 (1989), 221-229.
[18] T. Tsachev and V. G. Angelov, Fixed points of non-self mappings and applications, Nonlinear Anal. 21 (1993), No. 1, 9-16.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-PWA3-0022-0019
Identyfikatory