Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-PWA3-0022-0015

Czasopismo

Demonstratio Mathematica

Tytuł artykułu

About some linear and positive operators defined by infinite sum

Autorzy Pop, O. 
Treść / Zawartość https://www.degruyter.com/view/j/dema
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In [13], we study a class of linear and positive operators defined by finite sum. In this paper we demonstrate general properties for a class of linear positive operators denned by infinite sum. By particularization, we obtain statements, the convergence and the evaluation for the rate of convergence in therm of the first modulus of smoothness for the Mirakjan-Favard-Szasz operators, Baskakov operators and Mayer-Konig and Zeiler operators. We don't study the convergence of these operators with the well known theorem of Bohman-Korowkin.
Słowa kluczowe
PL operatory   operatory Baskakova   operatory Meyer-Koniga   operatory Mirakjan-Favard-Szasz   teoria Voronovskaja  
EN operators   Baskakov operators   Meyer-Konig operators   Mirakjan-Favard-Szasz operators   Voronovskaja-type theorem  
Wydawca De Gruyter
Czasopismo Demonstratio Mathematica
Rocznik 2006
Tom Vol. 39, nr 2
Strony 377--388
Opis fizyczny Bibliogr. 16 poz.
Twórcy
autor Pop, O.
Bibliografia
[1] O. Agratini, Aproximare prin operatori liniari , Presa Universitară Clujeană Cluj-Napoca, 2000 (Romanian).
[2] V. A. Baskakov, An example of a sequence of linear positiv operators in the space of continuous functions, Dokl. Acad. Nauk, SSSR, 113 (1957), 249-251.
[3] M. Becker, R. J. Nessel, A global approximation theorem for Meyer-Köig and Zeller operators, Math. Zeitschr., 160 (1978), 195-206.
[4] E. W. Cheney, A. Sharma, Bernstein power series, Canadian J. Math. 16 (1964), 2, 241-252.
[5] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer Verlag, Berlin, 1987
[6] J. Favard, Sur les multiplicateurs d'interpolation, J.Math. Pures Appl. 23(9) (1944), 219-247.
[7] G. G. Lorent z, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
[8] G. G. Lorent z, Approximation of Functions, Holt, Rinehart and Winston, New York, 1966.
[9] W. Meyer -König, K. Zeller, Bernsteinsche Potenzreihen, Studia Math. 19 (1960), 89-94.
[10] G. M. Mirakjan, Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR, 31 (1941), 201-205 (Russian).
[11] M. W. Müller, Die Folge der Gammaoperatoren, Dissertation, Stuttgart, 1967.
[12] O. T. Pop, About a class of linear and positive operators, Carpathian J. Math. 21 (2005), no. 1-2, 99-108.
[13] O. T. Pop, The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Num. Th´eor. Approx. 34 (2005), no. 1, 79-91.
[14] D. D. Stancu, Gh. Coman, O. Agrat ini, R. Trîmbiţaş, Analiză numerică ¸şi teoria aproximării , I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (Romanian).
[15] O. Szász, Generalization of S. N. Bernstein's polynomials to the infinite interval , J. Research, National Bureau of Standards 45 (1950), 239-245.
[16] E. Voronovskaja, D´etermination de la forme asymtotique d'approximation des functions par les polynôme de Bernstein, C. R. Acad. Sci. URSS (1932), 79-85.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-PWA3-0022-0015
Identyfikatory