Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Demonstratio Mathematica

Tytuł artykułu

Divisibility of orders of K2 groups associated to quadratic fields

Autorzy Kimura, I. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN We discuss some divisibility results of orders of K-groups and cohomology groups associated to quadratic fields.
Słowa kluczowe
PL grupy   podzielność   pola podziału koła   pola kwadratowe  
EN groups   cyclotomic fields   quadratic fields   divisibility   higher class number  
Wydawca De Gruyter
Czasopismo Demonstratio Mathematica
Rocznik 2006
Tom Vol. 39, nr 2
Strony 277--284
Opis fizyczny Bibliogr. 22 poz.
autor Kimura, I.
[1] J. Browkin, On the divisibility by 3 of #K2OF for real quadratic fields F, Demonstratio Math. 18(1) (1985), 153–159.
[2] J. Browkin, On the p-rank of the tame kernel of algebraic number fields, J. Reine Angew. Math. 432 (1992), 135–149.
[3] J. Browkin, Tame kernels of quadratic number fields: numerical heuristics, Funct. Approx. Comment. Math. 28 (2000), 35–43. Dedicated to Włodzimierz Staś on the occasion of his 75th birthday.
[4] D. Byeon, Indivisibility of special values of Dedekind zeta functions of real quadratic fields, Acta Arith. 109(3) (2003), 231–235.
[5] D. Byeon and E. Koh, Real quadratic fields with class number divisible by 3, Manu-scripta Math. 111(2) (2003), 261–263.
[6] H. Cohen and H. W. Lenstra, Jr. Heuristics on class groups of number fields, In Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), pages 33–62. Springer, Berlin, 1984.
[7] H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217(3) (1975), 271–285.
[8] I. Kimura, Some implications of indivisibility of special values of zeta functions of real quadratic fields, Math. J. Toyama Univ. 26 (2003), 85–91.
[9] M. Kolster, Higher relative class number formulae, Math. Ann. 323(4) (2002), 667–692.
[10] M. Kurihara, Some remarks on conjectures about cyclotomic fields and K-groups of Z, Compositio Math. 81(2) (1992), 223–236.
[11] Hong Wen Lu, Congruences for the class number of quadratic fields, Abh. Math. Sem. Univ. Hamburg 52 (1982), 254–258.
[12] B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Invent. Math. 76(2) (1984), 179–330.
[13] C. Queen, A note on class numbers of imaginary quadratic number fields, Arch. Math. (Basel) 27(3) (1976), 295–298.
[14] J. Rognes, K4(Z) is the trivial group, Topology 39(2) (2000), 267–281.
[15] J.-P. Serre, Cohomologie des groupes discrets, In Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970), pages 77–169. Ann. of Math. Studies, No. 70. Princeton Univ. Press, Princeton, N.J., 1971.
[16] C. Soule, On the 3-torsion in K4(Z), Topology 39(2) (2000), 259–265.
[17] K. Soundararajan, Divisibility of class numbers of imaginary quadratic fields, J. London Math. Soc. (2) 61(3) (2000), 681–690.
[18] J. Urbanowicz, On the divisibility of generalized Bernoulli numbers, In Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), volume 55 of Contemp. Math., pages 711–728. Amer. Math. Soc., Providence, RI, 1986.
[19] L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York, second edition, 1997.
[20] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131(3) (1990), 493–540.
[21] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57–76.
[22] G. Yu, A note on the divisibility of class numbers of real quadratic fields, J. Number Theory 97(1) (2002), 35–44.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-PWA3-0022-0004