Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-PWA3-0011-0021

Czasopismo

Demonstratio Mathematica. Warsaw Technical University Institute of Mathematics

Tytuł artykułu

On some right invertible operators in differential spaces

Autorzy Multarzyński, P. 
Treść / Zawartość http://demmath.mini.pw.edu.pl/access.php https://www.degruyter.com/view/j/dema
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In this paper we consider the right invertibility problem of some linear operators defined on the algebra of smooth function on a differential space.
Słowa kluczowe
PL operatory linearne   funkcje gładkie   operatory odwracalne   przestrzeń różniczkowa   pole wektorowe  
EN linear operators   invertible operators   differential space   smooth functions   vector fields  
Wydawca De Gruyter
Czasopismo Demonstratio Mathematica. Warsaw Technical University Institute of Mathematics
Rocznik 2004
Tom Vol. 37, nr 4
Strony 905--920
Opis fizyczny Bibliogr. 32 poz.
Twórcy
autor Multarzyński, P.
  • Faculty of Mathematics and Information Science, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
Bibliografia
[1] N. Aronszajn, Subcartesian and subriemannian spaces, Notices Amer. Math. Soc. 14 (1967), 111.
[2] N. Aronszajn, F. Szeptycki, Theory of Bessel potentials, Part IV, Ann. Inst. Fourier 25 (1979), 27-67.
[3] K.T. Chen, Iterated path integrals, Bulletin of AMS, vol. 8, No 5 (1977), 115-137.
[4] A. Frölicher, A. Kriegl, Linear Spaces and Differentiation Theory, J. Wiley and Sons, Chichester (1988).
[5] Ch. D. Marshall, Calculus on subcartesian spaces, J. Diff. Geom. 10 (1977), 115-137.
[6] M. A. Mostov, The differentiable space structures of Milnor clasifying spaces, Simplicial Complexes and Geometric Relations, J. Diff. Geom. 14 (1979), 255-293.
[7] I. Satake, On a generalization of the notion of manifold, Proc. Natl. Acad. Sci. 42 (1956), 359-363.
[8] K. Spallek, Differenzierbare Raume, Math. Ann. 180 (1969), 269-296.
[9] K. Spallek, Zur Klassifikation differenzierbarer Gruppen, Manuscripta Math. 11 (1974), 45-79.
[10] R. Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), 251-272.
[11] R. Sikorski, Differential modules, Colloq. Math. 24 (1971), 45-70.
[12] R. Sikorski, An Introduction to Differential Geometry, PWN, Warszawa 1972, in Polish.
[13] D. Przeworska-Rolewicz, Algebraic Analysis, PWN-Polish Scientific Publishers and D. Reidel, Warszawa-Dordrecht, 1988.
[14] D. Przeworska-Rolewicz, Algebraic theory of right invertible operators, Studia Math. 48 (1973), 129-144.
[15] D. Przeworska-Rolewicz, Right invertible operators and functional-differential equations with involutions, Demonstratio Math. 5 (1973).
[16] D. Przeworska-Rolewicz, Introduction to Algebraic Analysis and its Applications, WNT, Warszawa 1979, in Polish.
[17] D. Przeworska-Rolewicz, Logarithms and Antilogarithms, An Algebraic Analysis Approach, Kluwer Academic Publishers, Dordrecht 1998.
[18] B. Mażbic-Kulma, Differential equations in differential spaces, Studia Math. 39 (1971), 157-161.
[19] G. Virsik, Right inverses of vector fields, J. Austral. Math. Soc. (Series A) 58 (1995), 411-420.
[20] W. F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer, New York, Berlin 1983.
[21] Z. Pasternak-Winiarski, Differential groups of class Do and standard charts, Demonstratio Math. 2 (1983), 503-517.
[22] W. Sasin, Infinite cartesian product of differential groups, Math. Nachr. 149 (1990), 61-70.
[23] M. Heller, Algebraic foundations of the theory of differential spaces, Demonstratio Math. 24 (1991), 349-364.
[24] P. Multarzyński, W. Sasin, On the dimension of differential spaces, Demonstratio Math. 23 (1990), 405-415.
[25] P. Multarzyński, W. Sasin, Algebraic characterization of the dimension of differential spaces, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Ser. II No 22 (1989), 193-199.
[26] P. Multarzyński, W. Sasin, Z. Żekanowski, Vectors and vector fields of k-th order, Demonstratio Math. 24 (1991), 557-572.
[27] P. Multarzyński, Z. Żekanowski, On general Hamiltonian dynamical systems in differential spaces, Demonstratio Math. 24 (1991), 539-555.
[28] P. Multarzyński, Whitney topology and the structural stability of smooth mappings in differential spaces, Demonstratio Math. 24 (1991), 495-514.
[29] P. Multarzyński, Z. Pasternak-Winiarski, Differential groups and their Lie algebras, Demonstratio Math., 24 (1991), 515-537.
[30] J. Gruszczak, M. Heller, P. Multarzyński, A Generalization of manifolds as space-time models, J. Math. Phys. 29 (1988), 2576-2580.
[31] J. Gruszczak, M. Heller, P. Multarzyński, Physics with and without the equivalence principle, Found. Phys. 19 (1989), 607-618.
[32] P. Multarzyński, M. Heller, The differential and cone structures of space-time, Found. Phys. 21 (1990), 1005-1015.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-PWA3-0011-0021
Identyfikatory