Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamically equivalent perturbations of linear parabolic equations

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
A family of abstract parabolic equations with sectorial operator is studied in this paper. The conditions are provided to show that the global attractors for each equation exist and coincide. Although the common dynamics is simple, the examples presented in the final part of the paper indicate that the considered family may contain a linear equation together with a large number of its nonlinear perturbations. The mentioned examples include both scalar second order equations and the celebrated Cahn-Hilliard system.
Opis fizyczny
Bibliogr. 20 poz.
  • Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
  • [AD] R. A. Adams, Sobolev Spaces, Academic Press, New York 1975.
  • [AM] H. Amann, Linear and Quasilinear Parabolic Problems, Volume I, Birkhäuser, Basel 1995.
  • [C-C] A. N. Carvalho, J. W. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc. 66 (2002), 443-463.
  • [C-D 1] J. W. Cholewa, T. Dłotko, Global attractor for the Cahn-Hilliard system, Bull. Austral. Math. Soc. 49 (1994), 277-293.
  • [C-D 2] J. W. Cholewa, T. Dłotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge 2000.
  • [C-D-T] J. W. Cholewa, T. Dłotko, A. W. Turski, Asymptotics of pseudodifferential parabolic equations, Demonstratio Math. 35 (2002), 75-91.
  • [CZ] R. Czaja, Differential Equations with Sectorial Operator, Silesian University, Katowice 2002.
  • [GR] C. P. Grant, The Dynamics of Pattern Selection for the Cahn-Hilliard Equation, PhD Thesis, University of Utah 1991.
  • [HA] J. K. Hale, Attracting manifolds for evolutionary equations, GaTech, Preprint CDSNS96-257.
  • [HE] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin 1981.
  • [KR] S. G. Krein, Linear Differential Equations in Banach Space, AMS, Providence, R.I. 1971.
  • [LA] O. A. Ladyženskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge 1991.
  • [L-Z] De-Sheng Li, Chen-Kui Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Diff. Equations 149 (1998), 191-210.
  • [LU] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Berlin 1995.
  • [ML] W. Mlak, Hilbert Spaces and Operator Theory, Kluwer (PWN), Dordrecht 1991 .
  • [PA] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York 1983.
  • [R-H] P. Rybka, K.-H. Hoffmann, Convergence of solutions to Cahn-Hilliard equation, Commun. Partial Differential Equations 24 (1999 ), 1055-1077.
  • [S-Y] G. R. Sell, Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York 2002.
  • [TE] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York 1998 .
  • [TR] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Deutscher Verlag der Wissenschaften, Berlin 1978.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.