PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Centralizing mappings and derivations on semiprime rings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we study some properties of centralizing mappings on semi-prime rings. The main purpose is to prove the result: Let -R be a semiprime ring and f an endomorphism of R, g an epimorphism of R such that the mapping x -> [f(x),g(x)] is central. Then [f(x),g(x)] = 0 holds for all x e R. We also establish some results about (alpha,beta)-derivations.
Wydawca
Rocznik
Strony
285--292
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, chaudhry@kfupm.edu.sa
autor
  • Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, athaheem@kfupm.edu.sa
Bibliografia
  • [1] R. Awtar, On a theorem of Posner, Proc. Cambridge Philos. Soc. 73 (1973), 25-27.
  • [2] I. Beidar, Y. Fang, W. F. Ke and C. H. Lee, Posner's Theorem for generalized (σ, τ)-derivations, Second International Tainan - Moscow Algebra Workshop (to appear).
  • [3] H. E. Bell and W. S. Martindale, III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), 92-101.
  • [4] M. Brešar, Centralizing mappings on von Neumann algebras, Proc. Amer. Math. Soc. 111 (1991), 501-510.
  • [5] M. Brešar, On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), 641-649.
  • [6] M. Brešar, On the composition of (α, β)-derivations of rings, and application to von Neumann algebras, Acta Sci. Math. (1992), 369-376.
  • [7] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993) 385-394.
  • [8] T. C. Chen, Special identities with (α, β)-derivations, Riv. Mat. Univ. Parma 5 (1996), 109-119.
  • [9] I. N. Herstein, Rings with Involution, The University of Chicago Press, 1976.
  • [10] N. Jacobson, Structure of rings, Colloq. Publ. 37, Amer. Math. Soc. (1956).
  • [11] V. K. Kharchenko and A. Z. Popov, Skew derivations of prime rings, Comm. Algebra 20 (1992), 3321-3345.
  • [12] J. Luh, A note on commuting automorphisms of rings, Amer. Math. Monthly 77 (1970), 61-62.
  • [13] J. H. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), 113-15.
  • [14] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
  • [15] A. B. Thaheem and M. S. Samman, A note on α-derivations on semiprime rings, Demonstratio Math. 34 (2001), 783-788.
  • [16] A. B. Thaheem and M. S. Samman, Centralizing mappings on semiprime rings, Int. J. Pure and Appl. Math. 3 (2002), 249-254.
  • [17] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47-52.
  • [18] J. Vukman, Derivations on semiprime rings, Bull. Austral. Math. Soc. 53 (1995), 353-359.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA3-0010-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.