Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-LOD7-0032-0048

Czasopismo

Biotechnology and Food Science

Tytuł artykułu

Immobilization techniques and biopolymer carriers

Autorzy Górecka, E.  Jastrzębska, M. 
Treść / Zawartość http://www.bfs.p.lodz.pl/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Various immobilization methods are expected to have a bright future in the field of pharmacy, medicine or industry. Production of immobilized enzymes mainly by CLEAs introduces a whole new level of biotransformations, where biocatalysts are highly purified and active. Improvement of CLEAs technology will certainly develop food and pharmaceutical industry. Another immobilization path is affinity binding, also focused on enzymes. Preparation of generic protocols for enzyme attachment will increase the sensitivity of this technology, as well as its simplicity. Biocatalyst re-usage will significantly decrease the costs. Immobilization in nanodelivery systems may shortly dominate the field of medical sciences. The vast problem of civilization diseases is the difficulty in medicaments administration, either due to the size of the drug or the inaccessibility of the treated site. Nanodelivery systems will overcome this issue, as they are able to carry drugs directly to their site of action. Cancer, Alzheimer's disease or autoimmune disorders will become controllable. Finally, other immobilization methods are being engineered in order to provide systems with better interactions with GI wall. Carriers will be adjusted for the highest selectivity for mucosal wall, whereas viral and bacterial mechanisms of uptake will be incorporated into biocatalyst to ameliorate the physiology of absorption.
Słowa kluczowe
PL immobilizacja   ścieżka biosyntezy   biopolimery   alginian   chitozan  
EN immobilization methods   biosynthesis pathways   biopolymers   alginate   chitosan  
Wydawca Lodz University of Technology Press
Czasopismo Biotechnology and Food Science
Rocznik 2011
Tom Vol. 75, nr 1
Strony 65--86
Opis fizyczny Bibliogr. 76 poz.
Twórcy
autor Górecka, E.
autor Jastrzębska, M.
Bibliografia
1. Lopez A, Lazaro N, Marques AM. The interphase technique: a simple method of cell immobilization in gel-beads. J Microbiol Methods, 1997, 30:231-234.
2. Peinado PA, Moreno JJ, Villaba JM, Gonzalez-Reyes JA, Ortega JM, Mauricio JC. A new immobilization method and their applications. Enzyme Microb Tech, 2006, 40:79-84.
3. Park JK, Chang HN. Microencapsulation of microbial cells. Biotechnol Adv, 2000, 18:303-319.
4. Tuszynski T. Immobilizacja drobnoustrojów: Możliwości ich przemysłowego wykorzystania. Uniwersytet Rolniczy w Krakowie, Katedra Technologii Fermentacji i Mikrobiologii Technicznej, Laboratorium Przemysłowe, Październik 2008.
5. Yu CY, Zhang XC, Zhou FZ, Zhang XZ, Cheng SX, Zhuo RX. Sustained release of antineoplastic drugs from chitosan-reinforced alginate microparticle drug delivery systems. Int J Pharm, 2008, 357:15-21.
6. Anal AK, Singh H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Tech, 2007, 18:240-251.
7. Guisan JM. Immobilization of enzymes and cells. In: Methods in Biotechnology, 2nd ed. Walker JM Eds.; Humana Press, Totowa, USA, 2006,Volume 22.
8. Lakkis JM. Encapsulation and Controlled Release: Technologies in Food Systems. 1st ed. Lakkis JM Eds.; Blackwell Publishing, Ames, USA, 2007.
9. Flickinger MC, Drew SW. Fermentation, Biocatalysis and Bioseparation. In: Encyclopedia of Bioprocess Technology, 1st ed. Flickinger MC Eds.; John Wiley & Sons, New York, USA, 1999, Volume 1.
10. Kumar N. Studies of glucose oxidase immobilized carbon nanotube - polyaniline composites. Thesis Thapar University, India, 2009.
11. Bucur B, Danet AF, Marty JL. Versatile method of cholinesterase immobilisation via affinity bonds using Concanavalin A applied to the construction of a screen-printed biosensor. Biosens Bioelectron, 2004, 20:217-225.
12. Mallik R, Wa C, Hage DS. Development of sulfhydryl-reactive silica for protein immobilization in high-performance affinity chromatography. Anal Chem, 2007, 79:4:1411-1424.
13. Neves-Petersen MT, Snabe T, Klitgaard S, Duroux M, Petersen SB. Photonic activation of disulfide bridges achives oriented protein immobilization on biosensor surfaces. Protein Sci, 2006, 15:343-351.
14. Afag S, Iqbal J. Immobilization and stabilization of papain on chelating sepharose: a metal chelate regenerable carrier. J Biotech, 2001, 4:3.
15. Wu Z, Ding L, Chen H, Yuan L, Huang H, Song W. Immobilization of proteins on metal ion chelated polymer surfaces. Colloid Surface B, 2009, 69:71-76.
16. Navarro JM, Durand G. Modification of yeast metabolism by immobilization onto porous glass. Eur J Appl Microbiol, 1977, 4:243-254.
17. Messing RA, Oppermann RA, Kolot FB. Pore dimensions for accumulating biomass. II. Microbes that form spores and exhibit mycelial growth. Biotechnol Bioeng, 1979, 21:1:59-67.
18. Gao S, Wang Y, Diao X, Luo G, Dai Y. Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15. Bioresource Technol, 2010, 101:11:3830-3837.
19. Gherardini L, Cousins CM, Hawkes JJ, Spengler J, Radel S, Lawler H, Devcic- Kuhar B, Groschl M, Coakley WT, McLoughlin AJ. A new immobilisation method to arange particles in a gel matrix by ultrasound standing waves. Ultrasound Med Biol, 2005, 31:261-272.
20. Bickerstaff GF. Immobilization of Enzymes and Cells. In: Methods in Biotechnology, 1st ed. Bickerstaff GF Eds.; Humana Press, Totowa, USA, 1997,Volume 1.
21. Cao L. Carrier-bound Immobilized Enzymes: Principles, Applications and Design. John Wiley & Sons, New York, USA, 2005.
22. Sheldon RA. Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem Soc T, 2007, 3:6.
23. Brady D, Jordaan J, Simpson C, Chetty A, Arumugan C, Moolman FS. Spherezymes: a novel structured self-immobilization enzyme technology. BMC Biotechnology, 2008, Volume 8.
24. Cao L. Enzymes: science or art? Curr Opin Chem Biol, 2005, 9:217-226.
25. Wnek GE, Bowlin GL. Encyclopedia of biomaterials and biomedical engineering, 2nd ed. Wnek GE Eds.; Informa Healthcare, New York, USA, 2008, Volume 1-4.
26. Ertesvag H, Skjak-Braek G. Modification of alginate using mannuronan C-5-epimerases. Methods in Biotechnology, 1999, 10:71-78.
27. Franklin MJ, Chitnis CE, Gacesa P, Sonesson A, White DC, Ohman DE. Pseudomonas aeruginosa AlgG is a polymer level alginate C-5-mannuronan epimerase. J Bacteriol, 1994, 176:1821-1830.
28. Muzzarelli RAA, Muzzarelli C. Chitosan chemistry: relevance to the biomedical sciences. Adv Polym Sci, 2005, 186:151-209.
29. Mangione MR, Giacomazza D, Bulone D, Martorana V, Cavallaro G, San Biagio PL. K+ and Na+ effects on the gelation properties of ?-carrageenan. Biophys Chem, 2005, 113:129-135.
30. De Ruiter GA, Rudolph B. Carrageenan biotechnology. Trends Food Sci Tech, 1997, 8:389-395.
31. El Seoud OA, Heinze T. Organic csters of cellulose: new perspectives for old polymers. Adv Polym Sci, 2005, 186:103-149.
32. Blandino A, Macias M, Cantero D. Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochem (Oxford), 2001, 36:601-606.
33. Busto MD, Ortega N, Perez-Mateos M. Effect of immobilisation on the stability of bacterial and fungal alpha-d-glucosidase. Process Biochem, 1997, 32:441-449.
34. Shtelzer S, Rappoport S, Avnir D, Ottolenghi M, Braun S. Properties of trypsin and acid phosphatase immobilized in sol-gel matrices. Biotechnol Appl Bioc, 1992, 15:227-235.
35. Leca B, Blum LJ. Luminol electrochemiluminescence with screen-printed electrodes for low-cost disposable oxidase-based optical sensors. Analyst, 2000, 125:789-791.
36. Lee KH, Lee PM, Siaw YS. Studies of l-phenylalanine production immobilized in stabilized calcium alginate beads. J Chem Technol Biot, 1992, 54:375-382.
37. Tanaka H, Kurosawa H, Kokufuta E, Veliky IA. Preparation of immobilized glucoamylase using Ca-alginate gel coated with partially quaternized poly(ethyleneimine). Biotechnol Bioeng, 1984, 26:1393-1394.
38. Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int J Pharm, 2002, 249:165-174.
39. Chan LW, Jin Y, Heng PWS. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. Int J Pharm, 2002, 242:255-258.
40. Chan LW, Lee HY, Heng PWS. Production of alginate microspheres by internal gelation using an emulsification method. Int J Pharm, 2002, 242:259-262.
41. Chan LW, Lee HY, Heng PWS. Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohyd Polym, 2006, 63:176-187.
42. Reis CP, Neufeld RJ, Vilela S, Ribeiro AJ, Veiga F. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J Microencapsul, 2006, 23:245-257.
43. Benita S. Microencapsualtion: methods and industrial applications. 2nd ed. Benita S Eds.; Informa Healthcare, New York, USA, 2006.
44. Dong Z, Wang Q, Du Y. Alginate/gelatin blend films and their properties for drug controlled release. J Membrane Sci, 2006, 280:37-44.
45. Uludag H, De Vos P, Tresco PA. Technology of mammalian cell encapsulation. Adv Drug Deliver Rev, 2000, 42:29-64.
46. de Kruif CG, Weinbreck F, de Vries R. Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid In, 2004, 9:340-349.
47. Weiss G, Knoch A, Laicher A, Stanislaus F, Daniels R. Simple coacervation of hydroxypropyl methylcellulose phthalate (HPMCP). Int J Pharm, 1995, 124:97-105.
48. Franzen S. Coacervation: encapsulation of liquids. Controlled drug delivery lectures. North Carolina State University, Raleigh, USA, 2001.
49. Gander B, Blanco-Preto MJ, Thomasin C, Wandrey Ch, Hunkeler D. Coacervation and phase separation. In: Encyclopedia of Pharmaceutical Technology, 3rd ed. Swarbrick J Eds.; Informa Healthcare, New York, USA, 2006, Volume 6.
50. Wieland-Berghausen S, Schote U, Frey M, Schmidt F. Comparison of microencapsulation techniques for the water-soluble drugs nitenpyram and clomipramine HCl. J Control Release, 2002, 85:35-43.
51. Gharsalaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spraydrying in microencapsulation of food ingredients: an overview. Food Res Int, 2007, 40:1107-1121.
52. Morgan CA, Herman N, White PA, Vesey G. Preservation of microorganisms bydrying; a review. J Microbiol Meth, 2006, 66:183-193.
53. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques, 2004, 37:790-802.
54. Betigeri SS, Neau SH. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials, 2002, 23:3627-3636.
55. Szczesna-Antczak M, Antczak T, Rzyska M, Moderzejewska Z, Patura J, Kalinowska H, Bielecki S. Stabilisation of an intracellular Mucor circinelloides lipase for application in non-aqueous media, J Mol Catal B-Enzym, 2004, 29:163-171.
56. Bajpai P, Margaritis A. Immobilization of Kluyveromyces marxianus cells containing inulinase activity in open pore gelatin matrix. 1. Preparation and enzymatic properties. Enzyme Microb Tech, 1985, 7:373-376.
57. Kusaoke H, Suzuki K, Nihei T, Kimura K. Utilization of gels prepared from chitosan as supports for enzyme and microorganism immobilization. In: Cellulose, 1st ed. Kennedy JF, Phillips GO, Williams PA Eds.; Ellis Horwood, New York, USA, 1990, pp. 501-506.
58. Wang LY, Ma GH, Su ZG. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. J Control Release, 2005, 106:62-75.
59. Alamilla-Beltran L, Chanona-Perez JJ, Jimenez-Aparicio AR, Guiterez-Lopez GF. Description of morphological changes of particles along spray-drying. J Food Eng, 2005, 67:179-184.
60. Tapia C, Escobar Z, Costa E, Sapag-Hagar J, Valenzuela F, Basualto C, Gai MN, Yazdani-Pedram M. Comparative studies on polyelectrolyte complexes and mixtures of chitosan-alginate and chitosan-carrageenan as prolonged diltiazem clorhydrate release systems. Eur J Pharm Biopharm, 2004, 57:65-75.
61. Mi FL, Sung HW, Shyu SS. Drug release from chitosan-alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohyd Polym, 2002, 48:61-72.
62. Ikeda Y, Kurokawa Y. Hydrolysis of 1,2-diacetoxypropane by immobilized lipase on cellulose acetate-TiO2 gel fiber derived from the sol-gel method. J Sol-Gel Sci Techn, 2001, 21:221-226.
63. Ikeda Y, Kurokawa Y. Synthesis of geranyl acetate by lipase entrap-immobilized in cellulose acetate-TiO2 gel fiber. J Am Chem Soc, 2001, 78:1099-1103.
64. Patil JS, Kamalapur MV, Marapur SC, Kadam DV. Ionotropic gelation and polyelectrolyte complexation: The novel techniques to design hydrogel particulate sustained, modulated drug delivery system: A review. Dig J Nanomater Bios, 2010, 5:241-248.
65. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm, 2008, 5:1003-1019.
66. Hoshino K, Taniguchi M, Marumoto H, Fujii M. Repeated batch conversion of raw starch to ethanol using amylase immobilized on a reversible soluble autoprecipitating carrier and flocculating yeast cells. Agr Biol Chem Tokyo, 1989, 53:1961-1967.
67. Alting AC. Cold gelation of globular proteins. Thesis Wageningen University, The Netherlands, 2003.
68. Ariga O, Kato M, Sano T, Nakazawa Y, Sano Y. Mechanical and kinetic properties of PVA hydrogel immobilizing alpha-galactosidase. J Ferment Bioeng, 1993, 76:203-206.
69. Bryant CM, McClements DJ. Influence of NaCl and CaCl2 on cold-set gelation of heat-denatured whey protein. J Food Sci, 2000, 65:801-804.
70. Munjal N, Sawhney SK. Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels. Enzyme Microb Tech, 2002, 30:613-619.
71. Mangione MR, Giacomazza D, Bulone D, Martorana V, San Biagio PL. Thermoreversible gelation of ?-carrageenan: relation between conformational transition and aggregation. Biophys Chem, 2003, 104,:95-105.
72. Finotelli PV, Rocha-Leao MHM. Microencapsulation of ascorbic acid in maltodextrin and capsule using spray-drying. CEPAC 2nd Mercosur Congress on Chemical Engineering, Rio de Janeiro, Brasil, 2005.
73. Krishnan S, Bhosale R, Singhal RS. Microencapsulation of cardamom oleoresin: evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials. Carbohyd Polym, 2005, 61:95-102.
74. Loksuwan J. Characteristics of microencapsulated ß-carotene formed by drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloid, 2007, 21:928-935.
75. Nickerson MT, Paulson AT, Wagar E, Farnworth R, Hodge SM, Rousseau D. Some physical properties of crosslinked gelatin-maltodextrin hydrogels. Food Hydrocolloid, 2006, 20:1072-1079.
76. Annan NT, Borza AD, Truelstrup-Hansen L. Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res Int, 2008, 41:184-193.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-LOD7-0032-0048
Identyfikatory