Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-LOD6-0006-0024

Czasopismo

Journal of Applied Analysis

Tytuł artykułu

Stability of impulsive hybrid set-valued differential wquations with delay by perturbing lyapunov functions

Autorzy Ahmad, B. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN We study the stability of the zero solution of an impulsive set differential system with delay by means of the perturbing Lyapunov function method. Sufficient conditions for the stability of the zero solution of impulsive set differential equations with delay are presented.
Słowa kluczowe
PL stateczność   stabilność asymptotyczna  
EN impulsive set differential equations with delay   stability   asymptotic stability  
Wydawca Walter de Gruyter GmbH & Co. KG
Czasopismo Journal of Applied Analysis
Rocznik 2008
Tom Vol. 14, nr 2
Strony 209--218
Opis fizyczny Bibliogr. 19 poz.
Twórcy
autor Ahmad, B.
Bibliografia
[1] Bainov. D. D., Simeonov, P. S., Systems with Impulse Effect, Ellis Horwood, Chichester, 1989.
[2] Gnana Bhaskar, T., Lakshmikantham. V., Set differential equations and flow invariance, Appl. Anal. 82 (2003), 357 368.
[3] Gnana Bhaskar, T., Lakshmikantham. V., Lyapunov stability for set differential equation. Dynam. Systems Appl. 13 (2004). 1-10.
[4] Hale, J., Theory of Functional Differential Equations, Springer-Verlag, New York. 1977.
[5] Koksal, S., Stability properties and perturbing Lyapunov functions, J. Appl. Anal. 43 (1992), 99-107.
[6] Lakshmikantham, V., Bainov, D. D., Simeonov. P. S., Theory of Impulsive Differential Equations, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989.
[7] Lakshmikantham, V., Gnana Bhaskar, T., Devi. J. V.. Theory of Set Differential Equations, Cambridge Scientific Publishers, Cambridge, 2006.
[8] Lakshmikantham, V., Leela, S., On perturbing Lyapunov functions, Math. Systems Theory 10 (1976), 85-90.
[9] Lakshmikantham, V., Leela, S., Vatsala, A. S.. Set-valued hybrid differential equations and stability in terms of two measures, Internal. J. Hybrid Systems 2 (2002), 169 187.
[10] Lakshmikantham, V., Leela, S., Vatsala, A. S., Interconnection between set, and fuzzy differential equations, Nonlinear Anal. 54 (2003), 351-360.
[11] Lakshmikantham, V., Leela, S., Vatsala, A. S., Stability theory for set differential. equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 11 (2004). 181-189.
[12] Lakshmikantham, V., Matrosov, V. M., Sivasundaram, S.. Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers. Dordrecht, 1991.
[13] Lakshmikantham, V., Tolstonogov, A., Existence and interrelation between set and fuzzy differential equations. Nonlinear Anal. 55 (2003), 255-268.
[14] Lopes Pinto, A. J. Brandao, De Blasi, F. S., Iervolino, F., Uniqueness and existence theorems for differential equations with compact convex valued solutions. Boll. Un. Mat. Ital. (4) 3 (1970), 47-54.
[15] McRae, F. A., Devi, J. V., Impulsive set differential equations with delay. Appl. Anal. 84 (2005), 329-341.
[16] Samoilenko. A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
[17] Soliman, A. A., Lipschitz stabilty with perturbing Lyapunov functionals, Appl. Math. Lett. 17 (2004), 939-944.
[18] Stutson, D., Vatsala A. S., Composite boundedness and stability results by perturbing Lyapunov functions, Nonlinear Anal. 26 (1996), 761-766.
[19] Tolstonogov, A., Differential Inclusions in a, Banach Space, Kluwer Academic Publishers, Dordrecht, 2000.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-LOD6-0006-0024
Identyfikatory