Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Journal of Applied Analysis

Tytuł artykułu

Some new generalizations of critical point theorems for locally Lipschitz functions

Autorzy Chen, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN In the present paper, some generalized critical points theorems for locally Lipschitz functions are given, and some classical important theorems are improved.
Słowa kluczowe
PL punkt krytyczny   wariacyjna zasada Ekelanda   lokalna funkcja Lipschitza  
EN critical point   Ekeland variational pronciple   locally Lipschitz function  
Wydawca Walter de Gruyter GmbH & Co. KG
Czasopismo Journal of Applied Analysis
Rocznik 2008
Tom Vol. 14, nr 2
Strony 193--208
Opis fizyczny Bibliogr. 13 poz.
autor Chen, J.
[1] Brezis, H., Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939-963.
[2] Chang, K., Variational methods for non-differential functions and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129.
[3] Clarke, F., Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[4] Costa, D. G., Silva, E. A. B., The Palais-Smale condition, versus coercivity. Nonlinear Anal. 16 (1991), 371-381.
[5] Costa, D. G., Magalhaes, C. A., Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal. 23 (1994), 1401-1412.
[6] Goeleven, D., Motreanu, D., Panagiotopoulos, P. D., Multiple solutions for a class of eigenvalue problems in hemivariational inequalities, Nonlinear Anal. 29 (1997). 9-26.
[7] Kourogenis, N. C., Papageorgiou, N. S., Nonsmooth critical point theory and nonlinear elliptic equations at resonance, J. Austral. Math. Soc. Ser. A 69 (2000), 245-271.
[8] Kristaly, A., Motreanu, V. V., Varga, Cs., A minimax principle with a general Palais-Smale condition, Commum. Appl. Anal. 9 (2005), 285-297.
[9] Marano, S. A., Motreanu, D., On a three critical points theorem for non-differential functions and applications to nonlinear boundary value problems. Nonlinear Anal. 48 (2002), 37-52.
[10] Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer- Verlag, New York-Berlin-Heidelberg-London-Paris-Tokyo, 1989.
[11] Schechter, M., Linking Methods in Critical Point Theory, Birkhauser, Boston, 1999.
[12] Zhong, C., On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl. 205 (1997), 239-250.
[13] Zhong, C., Fan, X., Chen, W., Introduction of Non-Linear Function Analysis. Lanzhou Univ. Publ. House, Lanzhou, 1998.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-LOD6-0006-0023