Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Linear Matrix Inequalities in multivariable ship’s steering

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper explains the basics of the Linear Matrix Inequalities (LMI), with examples of simulations and calculations created in Matlab/Simulink programming environment where the controlled plant is the “Blue Lady” ship model. First chapter of this paper gives a short overview of publications describing the use of Linear Matrix Inequalities method. Second chapter contains basic definitions and equations for the LMI method. Chapter three presents the use of LMI method for ship control by describing controller synthesis for the “Blue Lady”. Chapter four compares the operation of two controllers, the first one consisting of three independent proper adjusted PID controllers and the second one being a multivariable LMI controller. Finally conclusions from the above comparison are drawn.
S 1
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
  • Faculty of Marine Electrical Engineering, Gdynia Maritime University, Morska 81-87 81-225 Gdynia, POLAND,
  • 1. Liu T., Zhao J.: Synchronization of complex switched delay dynamical networks with simultaneously diagonalizable coupling matrices. Journal of Control Theory Apel, Vol. 6, No 4, 2008, p. 351–356
  • 2. Bretas: Decentralized output feedback controller design for the damping of electromechanical oscillations. Electrical Power and Energy Systems 26, 2004, p. 207–219
  • 3. Seog-Joo K., Soonman K., Young-Hyun M. : Low-order Robust Power System Stabilizer for Single-machine Systems: An LMI Approach. International Journal of Control, Vol 8, No 3, 2010 p. 556-563
  • 4. Ishimaru M., Yokoyama R., Shirai G., Niimura T.: Robust thyristor – controlled series capacitor controller design based on linear matrix inequality for a multi-machine power system. Electrical Power and Energy Systems 24, 2002, p.621-629
  • 5. Swarnakar A., Marquez H. J., Chen T.: a design framework for overlapping controllers and its industrial application. Control Engineering Practice 17, 2009, p.97– 111
  • 6. Wu J., Nguang S. K., Shen J., Liu G., Li Y.G.: Robust H∞ tracking control of boiler-turbine systems. ISA Transactions 49, 2010, p.: 369-375
  • 7. Lu L. T., Chiang W.-L., Tang J.-P., Liu M.-Y., Chen Ch.-W.: Active control for a benchmark building dunder wind excitation. Journal of Wind Engineering and Industrial Aerodynamics, 91, 2003, p.:469–493
  • 8. Nasuno Y., Shimizu E., Ito M., Yamamoto I., Tsukioka S., Yoshida H., Hyakudome T., Ishibashi S., Aoki T.: Design method for a new control system for an autonomous underwater vehicle using linear matrix inequalities. Artif Life Robotics, 11, 2007, p.:149–152
  • 9. Boyd S., EL Ghaoui L., Feron E., Balakrishnan V.: Linear Matrix in System and Control Theory. SIAM, Philadelphia, 1994
  • 10. Balas G.J., Doyle J.C. Glover K., Packard A. and Smith R.: Analysis and Synthesis Toolbox. Ver.4, The Mathworks Inc., Natick, USA, 2001
  • 11. Gierusz W.: Simulation model of the shiphandling training boat ,,Blue Lady’’, Int. IFAC Conference Control Applications in Marine Systems CAMS’01, Glasgow, Scotland, 2001
  • 12. Koziński W.: Controller design. Chosen classical and optimization methods., PW, Warszawa, 2004. (in Polish)
  • 13. Kaczorek T. : Vectors and matrices in automation and electrotechnics., WNT, Warszawa, 1998 (in Polish)
  • 14. Rybczak M., Gierusz W.: Linear Matrix Inequalities in multivariable ship’s steering, Polish Journal of Environmental Studies, Gdynia 2010, p.:100-106
  • 15. Rybczak M: The use of VRML program language to simulate ship model’s movement environment. Gdynia, 2006 (in Polish)
  • 16. Scherer C., Wieland S.: Linear Matrix Inequalities in Control. Delft University of Technology, 2004
  • 17. Sirocki S.: Multidimensional ship’s control with the use of PID controllers. Gdynia, 2009 (In Polish)
  • 18.
  • 19.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.