Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BWM4-0008-0040

Czasopismo

Archivum Combustionis

Tytuł artykułu

Detonation Performance of Al3Mg4 Enriched Explosives and Afterburning of the Detonation Products

Autorzy Trzciński, W. A.  Paszula, J. 
Treść / Zawartość http://archcomb.itc.pw.edu.pl/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The research on an effect of an alloy of aluminium and magnesium (AI3Mg4) contents on detonation characteristics of RDX-based compositions was carried out. Measurements of detonation velocity were performed. Parameters of blast waves produced by charges of the investigated explosives detonating in an open space were measured by the use of piezoelectric gauges. Quasi-static pressure measurements were conducted in a steel chamber of 0.15 m3 volume filled with air. Moreover, the heat of detonation was measured with a calorimetric set in a 5.6 dm3 bomb filled with argon. A degree of combustion of the metallic addition is also discussed.
Słowa kluczowe
PL spalanie stopów  
EN combustion of alloys  
Wydawca Komitet Termodynamiki i Spalania PAN
Czasopismo Archivum Combustionis
Rocznik 2007
Tom Vol. 27 nr 3-4
Strony 81--89
Opis fizyczny Bibliogr. 21 poz., rys., tab.
Twórcy
autor Trzciński, W. A.
autor Paszula, J.
  • Faculty of Advanced Technology and Chemistry, Military University of Technology Kaliskiego2, 00-908 Warsaw, POLAND
Bibliografia
[1] Stanyukovitch K. P., Physics of explosion, (Nauka, Moscow 1975, 2004).
[2] Dubnov L. W., Bacharievitch N. S., and Romanov A. I., Industrial explosives, (Niedra, Moscow 1988).
[3] Shvedov K.K., Some questions of detonation of explosive mixtures, (Tchernogolovka 1981).
[4] Aniskin A. I., The influence of aluminium on a profile of the detonation wave in high-dispersed hexogen, (Tchernogolovka 1981).
[5] V. Yu. Davydov, V. V. Kozmierchuk, E. Yu. Muryschev, I. D. Golavlev, The influence of an addition of aluminium powder on the explosive energy transported into axial and radial directions, Fizika Gorienya i Vzryva (in Russian), 1988, 24, 3, 96-98.
[6] V. Yu. Davydov, A. M. Gryschkin, I. I. Fyeodorytov, Experimental and theoretical investigation of aluminium oxidation in the detonation wave, Fizika Gorienya i Vzryva, (in Russian), 1992, 28, 5, 124-128.
[7] M. F. Gogulya, A. Yu. Dolgoborodov, M. A. Brazhnikov, G. Baudin, Detonation waves in HMX/Al mixtures (pressure and temperature measurements), Proceedings of 11th International Symposium on Detonation, Snowmass 1998, paper 127.
[8] H. Ritter, S. Braun, High explosives containing ultrafine aluminium ALEX, Propellants Explosives Pyrotechnics, 2001, 26, 311-314.
[9] A. Lefrancois, Ch. Le Gallic, Expertise of nanometric aluminium powder on the detonation efficiency of explosives, Proceedings of 32nd International Annual Conference of ICT, Karlsruhe 2001, paper 36.
[10] P. Brousseau, M. D. Cliff, The effect of ultrafine aluminium powder on the detonation properties of various explosives, Proceedings of 32nd International Annual Conference of ICT, Karlsruhe 2001, paper 37.
[11] M. A. Radwan, Explosive characteristic of aluminized plastic bonded explosives based on octogen and polyurethane binder, Proceedings of 32nd International Annual Conference of ICT, Karlsruhe 2001, paper 44.
[12] M. Held, Aluminized high explosive charges, Proceedings of 33rd International Annual Conference of ICT, Karlsruhe 2002, paper 15.
[13] A. Lefrancois, G. Baudin, C. Le Gallic, P. Boyce, J-P Coudoing, Nanometric aluminium powder influence on the detonation efficiency of explosives, Proceedings of 12th International Detonation Symposium, San Diego 2002, paper 273.
[14] S. Cudziło, W. A. Trzciński, Studies of HMX-based explosives containing magnesium and polytetrafluoroethylene, Chimiczeskaya Fizika, 22, 1 (2003), 82-89.
[15] S. Cudziło, W. A. Trzciński, Influence of some additives on the shock sensitivity of nitromethane, Journal of Technical Physics, 40, 2, 1999.
[16] L. E. Fried, CHEETAH 1.39 User’s Manual, UCRL-MA-117541 Rev. 3, Lawrence Livermore National Laboratory, 1996.
[17] W. A. Trzciński, On some methods of determination of the detonation energy of explosives, Archivum Combustionis, 2006, 26, 1-2, pp. 55-62.
[18] D. L. Ornellas, Calorimetric determinations of the heat and products of detonation of explosives, UCRL – 52821, Lawrence Livermore National Laboratory, Livermore 1982.
[19] W. A. Trzciński, J. Paszula, Confined explosions of high explosives, Journal of Technical Physics, vol. 41, 4, 2000.
[20] P. Wolański, Z. Gut, W. A. Trzciński, L. Szymańczyk, J. Paszula, Visualisation of turbulent combustion of TNT detonation products in a steel vessel, Shock Waves, vol. 10, 2, 2000, pp. 127-136.
[21] W. A. Trzciński, J. Paszula, P. Wolański, Thermodynamic analysis of afterburning of detonation products in confined explosions, Journal of Energetic Materials, 20, 1, 2002, pp. 195-222.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BWM4-0008-0040
Identyfikatory