Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Zeszyty Naukowe Instytutu Maszyn Przepływowych Polskiej Akademii Nauk w Gdańsku

Tytuł artykułu

Laserowa diagnostyka wyładowania koronowego w reaktorach plazmy nierównowagowej w powietrzu i wodzie

Autorzy Kocik, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji PL
Słowa kluczowe
PL wyładowania koronowe   reaktory plazmowe   lasery  
Wydawca Wydawnictwo Instytutu Maszyn Przepływowych PAN
Czasopismo Zeszyty Naukowe Instytutu Maszyn Przepływowych Polskiej Akademii Nauk w Gdańsku
Rocznik 2011
Tom nr 554/1513
Strony 1--118
Opis fizyczny Bibliogr. 89 poz., rys., tab.
autor Kocik, M.
  • Instytut Maszyn Przepływowych Polskiej Akademii Nauk w Gdańsku, Zakład Zastosowania Techniki Plazmowej, marek.kocik@imp.gdapl
[1] E. W. Rothe and P. Andresen, Application of Tunable Excimer Lasers to Combustion Diagnostics: A Review, Appl. Optics, 36, 18, 3971-4033, 1997
[2] T. Asanuma, Overview of New Visualization Techniques for Engine Combustion Research, Proc. of the First Int. Symp. on Flow Visualization and Image Processing, Honolulu, Hawai, Ed.: S. Mochizuki, 1-20, 1997
[3] IEEE Trans. on Plasma Science, Special Issue on Images in Plasma Science, 27, 1, 1999
[4] IEEE Trans. on Plasma Science, Special Issue on Images in Plasma Science, 30, 1, 2002
[5] Hakone VII, Int. Symp. on High Pressure Low Temperature Plasma Chemistry, Greifswald, Germany, September 10-13, 2000
[6] Hakone VIII, Int. Symp. on High Pressure Low Temperature Plasma Chemistry, Pűhajärve, Estonia, July 21-25, 2002
[7] L. B. Loeb, Electrical Coronas, Univ. of California Press, Berkeley and Los Angeles, 1965
[8] J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases, John Wiley and Sons, 1978
[9] G. Yu. Alekseev, A V. Levchenko, and V. Bityurin, Flue Gas Cleaning by Pulsed Corona. Part II: Chemical Kinetics and Heat/Mass Transfer in NO/SO2 Removal, Research Report, EG/93/673, Eindhoven University of Technology, 1993
[10] A. C. Gentile and M. J. Kushner, Reaction Chemistry and Optimization of Plasma Remediation of NxOy from Gas Streams, J. Appl. Phys.,78, 3, 2074-2085, 1995
[11] O. Eichwald, M. Yousfi, A. Hennad, and M. D. Benabdessadok, Coupling of Chemical Kinetics, Gas Dynamics and Charged Particles Kinetics Models for the Analysis of NO Reduction from Flue Gases, J. Appl. Phys., 82, 4781-4794, 1997
[12] E. Marode, S. Samson, D. Djermoune, N. Deschamps, and M. Touzeau, Influence of Temperature, Hydrodynamic and Diffusion Process on the Chemical Activity in Transient Filamentary Discharge, Proceedings of the 2nd Int. Symp. on Non-Thermal Plasma Technology for Pollution Control, Salvador, Brazil, 130-135, 1997
[13] A. A. Kulikovsky, Analytical Model of Positive Streamer in Weak Field in air: Application to Plasma Chemical Calculations, IEEE Trans. on Plasma Sci., 26, 4, 1339-1346, 1998
[14] J.-S. Chang and A. Kwan, Modelling of Dry Air Chemistry in a Coaxial Wire-Pipe Negative Corona Discharge, Proceedings of ESA-IEJ Joint Symposium on Electrostatics, Palo Alto, California, 391-407, 1998
[15] J. Mizeraczyk, M. Dors, and G.V. Nichipor, Kinetics of NOx Removal from Flue Gas Simulator Subjected to Corona Discharge, J. Adv. Oxid. Technol., 4, 380-385, 1999
[16] Y.-H. Kim, W. S. Kang, S. H. Hong, and Y.-H. Song, Comparative Study of Pulsed Corona and Dielectric Barrier Discharges Using Single-Streamer Modeling and NO Decomposition Experiment, Hakone VIII, Int. Symp. on High Pressure Low Temperature Plasma Chemistry, Pűhajärve, Estonia, July 21-25, 38-42, 2002
[17] J. M. Park, Y.-H. Kim, and S. H. Hong, Three-dimensional Numerical Simulation on the Streamer Propagation Characteristics of Pulsed Corona Discharge in a Wire-Cylinder Reactor, Hakone VIII, Int. Symp. on High Pressure Low Temperature Plasma Chemistry, Pűhajärve, Estonia, July 21-25, 104-108, 2002
[18] A. Ershov and J. Borysov, Dynamics of OH (X2?, v=0) in High-energy Atmospheric Pressure Electrical Pulsed Discharge, J. Phys. D: Appl. Phys., 28, 68-74, 1995
[19] J. J. Coogan and A. D. Sappey, Distribution of OH within Silent Discharge Plasma Reactors, IEEE Trans. on Plasma Sci., 24, 91-92, 1996
[20] R. Ono and T. Oda, Two Dimensional Measurement of OH Radicals Generated by Discharge Plasma by Using Tunable Excimer Laser Induced Fluorescence, Proceedings of the Asia-Pacific Workshop on Water and Air Treatment by Advanced Oxidation Technologies: Innovation and Commercial Applications, Tsukuba, Japan, pp. 66-69, 1998
[21] R. Ono and T. Oda, Measurement of Hydroxyl Radicals in an Atmospheric Pressure Discharge Plasma by Using Laser-induced Fluorescence, IEEE Trans. Ind. Appl., 36, 1, 82-86, 2000
[22] R. Ono and T. Oda, Measurement of Hydroxyl Radicals in Pulsed Corona Discharge, Proceedings of the IEJ-ESA Joint Symp. on Electrost., Kyoto, Japan, 287-296, 2000
[23] H. Hazama, M. Fujiwara, T. Sone, H. Hashimoyo, M. Ishida, and M. Tanimoto, Fluorescence Imaging of NO in a Pulsed Corona Discharge Reactor, Proceedings of the Asia-Pacific Workshop on Water and Air Treatment by Advanced Oxidation Technologies: Innovation and Commercial Applications, Tsukuba, Japan, 70-73, 1998
[24] G. J. Roth and M. A. Gundersen, Laser-induced Fluorescence Images of NO Distribution after Needle-Plane Pulsed Negative Corona Discharge, IEEE Trans. Plasma Sci., 27, 28-29, 1999
[25] F. Tochikubo and T. Watanabe, Two-dimensional Measurement of Emission Intensity and NO Density in Pulsed Corona Discharg, HAKONE VII, Int. Symp. on High Pressure Low Temperature Plasma Chemistry, Greifswald, Germany, 219-223, 2000
[26] F. Fresnet, G. Baravian, S. Pasquiers, C. Postel, V. Puech, A. Rousseau, and M. Rozoy, Time-resolved Laser-induced Fluorescence Study of NO Removal Plasma Technology in N2/NO Mixtures, J. Phys. D: Appl. Phys., 33,1315-1322, 2000
[27] Particle Image Velocimetry and Associated Techniques, Von Karman Institute for Fluid Dynamics, Lecture Series 2000-2001
[28] E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics, Wiley-Interscience, 1971
[29] Y.P. Raizer, Gas Discharges Physics, Springer, Berlin, 1991
[30] E.M. Bazelian, Yu.P. Raizer, Spark Discharge, MFTI, Moscow, 1997
[31] Electrical Discharges for Environmental Purposes: Fundamentals and Applications, Ed.:van Veldhuizen E.M., Nova Science Publishers, Inc., 2000
[32] C.F. Gallo, Corona - A Brief Status Report, IEEE Transactions on Industry Applications, Ia-13, 6, 550-557, 1977
[33] A. Jaworek, Podstawowe problemy optymalizacji wielopunktowego wyładowania koronowego, Zeszyty Naukowe IMP PAN, 434/1392/1994, 1994
[34] J.S. Chang, Corona discharge processes, IEEE Trans. on Plasma Sciences, 19, 6, 1152-1165, 1991
[35] J.S. Townsend, The potentials required to maintain currents between coaxial cylinders., Phil. Mag. 28, 83-90, 1914 za Jaworek A., Podstawowe problemy optymalizacji wielopunktowego wyladowania koronowego, Zeszyty Naukowe IMP PAN, 434/1392/94
[36] P. Giubbilini, The current-voltage characteristics of point to ring corona, J. Appl. Phys., 64, 7, 3730-3732, 1988
[37] E. M. Van Veldhuizen, Electrical Discharges for Environmental Purposes, Nova Science Publishers, New York, 2000
[38] M. I. Kerwick, S.M. Reddy, A.H.L. Chamberlain, D.M. Holt, Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection, Electrochimica Acta, 50, 5270-5277, 2005
[39] P.S.M. Dunlop, J.A. Byrne, N. Manga, B.R. Eggins, The photocatalytic removal of bacterial pollutants from drinking water, J. of Photochemistry and Photobiology A: Chem., 8, 355-363, 2002
[40] T. A. Ternesa, J Stüber, N. Herrmanna, D McDowell, A Ried, M. Kampmann, B. Teiser, Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater, Water Research, 37, 1976–1982, 2003
[41] A. L. Kowal, M. Świderska – Brzóz, Oczyszczanie wody, Wyd. Naukowe PWN, Warszawa-Wrocław, 1996
[42] Locke B.R., Sato M., Sunka P., Hoffmann M.R., Chang J.S., Electrohydraulic discharge and nonthermal plasma for water treatment, Ind. Eng. Chem. Res., 45, 882-905, 2006
[43] V. F. Klimkin, A Multiframe Ultrafast Laser Schlieren System for the Observation of Pre-breakdown Phenomena in Liquids in the Nanosecond Time Range, Sov. Phys. Tech. Phys. 36, 975-977, 1992
[44] W. A. K. Baumung, H.Bluhm, Underwater streamer propagation analyzed from detailed measurements of pressure release, J. App. Phys., 101, 053302, 2007
[45] H. Akiyama, Streamer discharges in liquids and their applications, IEEE Trans. Dielectrics Electr. Insul., 24, 471, 2000
[46] A. A. Kulikovsky, Two-dimensional simulation of the positive streamer in N2 between parallel-plate electrodes, J. Phys. D: Appl. Phys., 28, 2483-2493, 1995
[47] E. M. Van Veldhuizen, W. R. Rutgers, Pulsed positive corona streamer propagation and branching, J. Phys. D: Appl. Phys., 35, 2169–2179, 2002
[48] T. Namihira, D. Wang, S. Katsuki, R. Hackam, H. Akiyama, Propagation velocity of pulsedstreamer discharges in atmospheric air, IEEE Plasma Sci., 31, 1091-1094, 2003
[49] R. Ono, T. Oda, Formation and structure of primary and secondary streamers in positive pulsed corona discharge - effect of oxygen concentration and applied voltage, J. Phys. D: Appl. Phys., 36, 1952-1958, 2003
[50] E. M. Van Veldhuizen, A. H. F. M. Baede, D. Hayashi, W. R. Rutgers, In Proc. APP Spring Meeting, Bad Honnef: Germany, 231-4, 2001
[51] Valette, N. Internal Report EPG, Eindhoven University of Technology, 2001
[52] E. M. Van Veldhuizen, P. C. M. Kemps, W. R. Rutgers, Streamer branching in a short gap: the influence of the power supply, IEEE Plasma Sci., 30, 162-163, 2002
[53] J. Mizeraczyk, T. Ohkubo, S. Kanazawa, Y. Nomoto, In Proceedings of 1999 Annual Meeting of the Institute of Electrostatics Japan Tsudanuma: Japan, 231-234, 1999
[54] J. Mizeraczyk, T. Ohkubo, S. Kanazawa, Y. Nomoto, T. Kawasaki, M. Kocik, In Laser Technology VI: Applications, Woliński, W.L.; Jankiewicz, Z. Eds., In Proc. of SPIE, 4238, pp 242-245, 2000
[55] T. Ohkubo, T. Ito, Y. Shuto, S. Akamine, S. Kanazawa, Y. Nomoto, J. Mizeraczyk, Streamer Corona Induced by Laser Pulse During LIF Measurements in a DC Non-thermal Plasma Reactor for NO Oxidation, J. Adv. Oxid. Technol., 5, 129-134, 2002
[56] J. Mizeraczyk, S. Kanazawa, T. Ohkubo, Progress in the Visualization of Filamentary Gas Discharges, J. Adv. Oxid. Technol., 7, 129-134, 2004
[57] Y. Izawa, J. B. Yang, K. Nishijima, Laser-Induced Burst Corona and Streamer Corona for a Positive DC Non-uniform Field Gap in N2/NO Mixtures, Trans. Inst. Elect. Eng. Japan, 121-A, 6, 509-515, 2001
[58] W. Demtröder, Spektroskopia Laserowa, PWN, 1993
[59] J. Mizeraczyk, M. Kocik, J. Podliński, Flow diagnostics using particle image velocimetry method, Proc. of SPIE, vol. 6598, Laser Technology VIII: Applications of Lasers, 65980W-1 – 65980W-5, 2007
[60] K. Yan, S. Yamamoto, S. Kanazawa, T. Ohkubo, Y. Nomoto, J. S. Chang, Control of flow stabilized positive corona discharge modes and NO removal characteristics in dry air by CO2 injections, J. of Electrostatics, 46, 207-219, 1999
[61] W. J. Yi, P. F. Williams, Experimental study of streamers in pure N2 and N2/O2 mixtures and a ~13 cm gap, J. Phys. D: Appl. Phys., 35, 205-218, 2002
[62] G. C. Lichtenberg, Novi Comment., 8, 168,1778
[63] Y. Murooka and S. Koyama, A nanosecond surface discharge study in low pressures, J. Appl. Phys., 50, 6200, 1979
[64] K. Hidaka and Y. Murooka, 3.0 nanosecond surfacedischarge development, J. Appl. Phys. 59, 87-92, 1985
[65] M. Akazaki and I. Tsuneyasu , Trans. IEE Japan., 88-11, 2117, 1968
[66] Y. Nakao, H. Itoh, Y. Sakai, H. Tagashira, Studies of the Creepage Discharge on the Surface of Liquids, IEEE Trans. El. Ins., 23, 4, 677-687, 1988
[67] Y. Kinoshita, H. Ikeda, R. Iguchi, K. Takashima, S. Katsura, A. Mizuno, Decolorization of Indigocarmine by Discharge an and Above the Liquid Surface, J. Inst. Electrostat. Jpn., 30, 32-37, 2006
[68] F. Tochikubo, Y. Furuta, S. Uchida, T. Watanabe, Study of Wastewater Treatment by OH Radicals Using DC and Pulsed Corona Discharge over Water, Jpn. J. Appl. Phys., 45, 2743-2748, 2006
[69] K. Kudo, Fractal analysis of electrical trees, IEEE Trans. El. Ins., 5, 713-727, 1998
[70] L. Niemeyer, L. Pietronero, H. J. Wiesmann, Fractal Dimension of Dielectric Breakdown, Phys. Rev. Lett., 52, 1033-36, 1984
[71] B. Sun, M. Sato, J.S. Clements, Optical study of active species produced by a pulsed streamer corona discharge in water, Journal of Electrostatics, 39, 189-202, 1997
[72] B. Sun, M. Sato, A. Harano, J.S. Clements, Non-uniform pulse discharge-induced radical production in distilled water, Journal of Electrostatics, 43, 115-126, 1998
[73] P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, M. Cernak, Generation of chemically active species by electrical discharges in water, Plasma Sources Sci. Technol., 8, 258-265, 1999
[74] S. Shimamoto, S. Akamine, S. Kanazawa, T. Ohkubo, Y. Nomoto, and J. Mizeraczyk, Fundamental Characteristics of Positive Corona Discharge in Needle-to-Plane Electrode System, Proceedings of 2001 Annual Meeting of The Institute of Electrostatics Japan, Tokyo (Kogakuin University), September 11, 65-66, 2001
[75] S. Shimamoto, S. Kanazawa, T. Ohkubo, Y. Nomoto, and J. Mizeraczyk, Fundamental Characteristics of Glow and Streamer Discharges in Needle-to-Plate Electrode System, Papers of the Technical Meeting on Pulse Power and Electrical Discharge, IEE Japan, Saga University, October 1, 27-30, 2001
[76] A. M. Hussein, W. Janischewskyj, J.-S. Chang, V. Shostak, W. A. Chisholm, P. Dzurevych and Z.-I. Kawasaki, Simultaneous measurement of lightning parameters for strokes to the Toronto Canadian National Tower, J. Geophys. Res., 100, 8853, 1995
[77] J. M. K. MacAlpine, D. H. Qiu and Z. Y. Li, An Analysis of Spark Paths in Air Using 3-Dimensional Image Processing, IEEE Trans. Dielectr. Electr. Insul., 6, 331, 1999
[78] S. Nijdam, J. S. Moerman, T. M. P. Briels, E. M. van Veldhuizen and U. Ebert, Stereo-photography of streamers in air, Appl. Phys. Lett., 92, 101502, 2008
[79] S. Nijdam, C. G. C. Geurts, E. M. van Veldhuizen and U. Ebert, Reconnection and merging of positive streamers in air, J. Phys. D:Appl. Phys., 42, 045201, 2009
[80] T. Adachi, M. Kawasaki, Ionic Wind in the Corona Discharging electric field, J. Inst. Electrostat. Jpn., 2, 3, 158-168, 1978
[81] J. Zierep, Kryteria podobieństwa i zasady modelowania w mechanice płynów, PWN, 1978
[82] J. Dekowski, J. Mizeraczyk, M. Kocik, M. Dors, J. Podliński, S. Kanazawa, T. Ohkubo, J.S. Chang, Electrohydrodynamic Flow and its Effect on Ozone Transport in Corona Radical Shower Reactor, IEEE Tran. Plasma Sci., 32, 2, 370-379, 2004
[83] T. Ohkubo, S. Kanazawa, Y. Nomoto, J. S. Chang, T. Adachi, NOx Removal by a Pipe with Nozzle-Plate Electrode Corona Discharge System, IEEE Trans. Ind. Appl., 30, 4, 856-861, 1994
[84] J. Dekowski, J. Mizeraczyk, Numerical simulation of ozone concentration in non-thermal plasma reactor, 4th Int. Conf. On Electromagnetic Devices and Processes in Enviroment Protection, ELMECO’2003, Nałęczów, Book of Abstracts, 14, 2003
[85] L. Zhao, K. Adamiak, Dynamics of EHD flow in pin-plate configuration generated by electric corona discharge in air, ICAES’2004, Shanghai, 29-32, 2004
[86] R. Ono and T. Oda, Measurement of hydroxyl radicals in pulsed corona discharge, J. Electrostatics, 55, 333-342, 2002
[87] F. Tochikubo, S. Uchida, T. Watanabe, Study on decay characteristics of OH radical density in pulsed discharge in Ar/H2O, Jpn. J. Appl. Phys., 43, 1, 315-320, 2004
[88] R. Ono, T. Oda, Measurement of gas temperature and OH density in the afterglow of pulsed positive corona discharge, J. Phys. D: Appl. Phys., 41, 0305204, 2008
[89] Z. Falkenstein, The influence of ultraviolet illumination on OH formation in dielectric barrier discharges of Ar/O2/H2O: The Joshi effect, J. Appl. Phys., 81, 11, 7158-7162, 1997
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BWM1-0009-0002