Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BWAW-0007-0004

Czasopismo

Opto - Electronics Review

Tytuł artykułu

Influence of electric field on photoluminescence of Cu(In,Ga)Se₂-based solar cells

Autorzy Igalson, M.  Pawłowski, M.  Prządo, D. 
Treść / Zawartość http://www.wat.edu.pl/review/optor/contents.htm
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The photoluminescence (PL) of solar cells, based on Cu(In,Ga)Se₂ and bare Cu(In,Ga)Se₂ absorbers, has been studied. Shapes and intensity dependencies of the PL spectra in the junctions and in thin films are compared and discussed in terms of influence of the junction field. Measurements of the otoluminescence in the cells biased in the forward direction are employed in order to show straightforwardly how electric field changes the radiative recombination rate.
Słowa kluczowe
EN solar cells   CIGS   photoluminescence  
Wydawca Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Czasopismo Opto - Electronics Review
Rocznik 2011
Tom Vol. 19, No. 4
Strony 435--438
Opis fizyczny Bibliogr. 20 poz.
Twórcy
autor Igalson, M.
autor Pawłowski, M.
autor Prządo, D.
  • Faculty of Physics, Warsaw University of Technology, 75 Koszykowa Str., 00-662 Warsaw, Poland, igalson@if.pw.edu.pl
Bibliografia
[1] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor”, Progr. Photov. Res. Appl. 16, 235-239 (2008).
[2] S. Zott, K. Leo, M. Ruckh, and H. W. Schock, “Radiative recombination in CuInSe2 thin films”, J. Appl. Phys. 82, 356-367 (1997).
[3] S. M. Wasim, C. Rincón, E. Hernández, M. A. Arsene, F. Voillot, J. P. Peyrade, G. Bacquet, and A. Albacete, “Photoluminescence in p-type CuInSe2 single crystals”, J. Phys. Chem. Solids 59, 245-252 (1998).
[4] A. Bauknecht, S. Siebentritt, J. Albert, and M. Ch. Lux-Steiner, “Radiative recombination via intrinsic defects in CuxGaySe2”, J. Appl. Phys. 89, 4391-4400 (2001).
[5] S. Siebentritt, N. Rega, A. Zajogin, and M. Ch. Lux-Steiner, “Do we really need another PL study of CuInSe2?”, Phys. Status Solidi (c) 1, 2304-2310 (2004).
[6] I. Dirnstorfer, D. M. Hofmann, D. Meister, and B. K. Meyer, “Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in In-rich thin films”, J. Appl. Phys. 85, 1423-1428 (1999).
[7] R. Bacewicz, P. Żuk, and R. Trykozko, “Photoluminescence study of ZnO/CdS/Cu(In,Ga)Se2 solar cells”, Opto-Electron. Rev. 11, 277-280 (2003).
[8] N. Rega, S. Siebentritt, J. Albert, and M. Lux-Steiner, “Photoluminescence of Cu(In1-xGax)Se2 epitaxial thin films grown by MOVPE”, Mat. Res. Soc. Symp. Proc. 763, 183-188 (2003).
[9] A. Bauknecht, S. Siebentritt, J. Albert, and M. Ch. Lux-Steiner, “Radiative recombination via intrinsic defects in CuxGaySe2”, J. Appl. Phys. 89, 4391-4400 (2001).
[10] I. Dirnstorfer, M. Wagner, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of CuIn(Ga)Se2 thin films I: Cu-rich layers”, Phys. Status Solidi (a) 168, 163-175 (1998).
[11] J. Krustok, H. Collan, M. Yakushev, and K. Hjelt, “The role of spatial potential fluctuations in the shape of the PL bands of multinary semiconductor compounds”, Phys. Scripta T79, 179-182 (1999).
[12] A. P. Levanyuk and V. V. Osipov, “Edge luminescence of direct-gap semiconductors”, Sov. Phys. Uspekhi 24, 187 (1981).
[13] P. W. Yu, “Excitation-dependent emission in Mg-, Be-, Cd-, and Zn-implanted GaAs”, J. Appl. Phys. 48, 5043-5051 (1977).
[14] M. Kasemann, D. Grote, B. Walter, W. Kwapil, T Trupke, Y. Augarten, R. A. Bardos, E. Pink, M. D. Abbott, and W. Warta,“Luminescence imaging for the detection of shunts on silicon solar cells”, Progr. Photov. Res. Appl. 16, 297-305 (2008).
[15] L. Gütay and G. H. Bauer, “Spectrally resolved photoluminescence studies on Cu (In, Ga)Se2 solar cells with lateral submicron resolution”, Thin Solid Films 515, 6212-6216 (2007).
[16] L. Gütay and G. H. Bauer, “Lateral features of Cu(In0.7Ga0.3)Se2-heterodiodes in the μmscale by confocal luminescence and focused light beam induced currents”, Thin Solid Films 517, 2222-2225 (2009).
[17] J. Kessler, M. Bodegrd, J. Hedström, and L. Stolt, “Baseline Cu (In, Ga)Se2 device production: Control and statistical significance”, Sol. Energ. Mat. Sol. C. 67, 67-76 (2001).
[18] I. E. Beckers, U. Fiedeler, S. Siebentritt, and M.Ch. Lux-Steiner, “Voltage-dependent electromodulated photoluminescence of chalcopyrite solar cells”, J. Phys. Chem. Solids 64, 2031-2035 (2003).
[19] W. K. Metzger, I. L. Repins, and M. A. Contreras, “Long life-times in high-efficiency Cu (In, Ga) Se2 solar cells”, Appl. Phys. Lett. 93, art. no. 022110 (2008).
[20] S. Lany and A. Zunger, “Light and biasinduced metastabilities in Cu (In, Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex”, J. Appl. Phys. 100, art. no. 113725 (2006).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BWAW-0007-0004
Identyfikatory