Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BWAW-0002-0035

Czasopismo

Journal of Achievements in Materials and Manufacturing Engineering

Tytuł artykułu

X-ray and SEM studies on zirconia powders

Autorzy Dercz, G.  Prusik, K.  Pająk, L. 
Treść / Zawartość http://www.journalamme.org
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: The microstructure characterization of commercially available zirconia powders was the purpose of this paper. Different methods of structure analysis were applied owing to the complex, multiphase structure of studied materials. Design/methodology/approach: The X-ray diffraction (XRD) and scanning electron microscopy (SEM) investigations were performed on three commercial zirconia ceramic materials: Amdry 204 NS (ZrO2~ 8 wt.% of Y2O3), Metco C8 YZ (ZrO2~ 8 wt.% of Y2O3) and Metco 202 (ZrO2~ 20 wt.% of Y2O3). The Rietveld method appeared to be very useful in the verification of the qualitative phase composition and in the determination of phase abundance. Hill and Howard procedure was applied for quantitative phase analysis. The parameters of the individual diffraction line profiles were determined by PRO-FIT Toraya procedure. The powder morphology was analyzed by SEM method. Findings: In the Amdry sample comparable contents of two phases: monoclinic (44.1 wt.%) and cubic (55.9 wt.%) was stated by XRD analysis. The presence of Y2O3 phase besides of monoclinic, tetragonal and cubic ZrO2 ones were stated for both Metco samples. The tetragonal phase (55.2 wt.%) was found to be the main component of the Metco C8-YZ sample whereas the content of Y2O3 is the lowest (2.7 wt.%). On the other hand cubic phase (68.2 wt.%) was the main component of the Metco 202 sample and the content of Y2O3 is again the lowest (4.5 wt.%). The SEM images of all the samples reveal the spherical shape of powder particles. The morphology of both Metco samples is quite similar. For Metco 202 sample the hierarchical type structure of powder particle is observed; the greater particles contain smaller ones. The shell of particles is composed of distinct patches. On the other hand the structure of spherical particles of Amdry sample is of branched, rather dense skeleton type. From X-ray diffraction data it can be concluded that the crystallite size of all involved phases lies above nanoscale. Practical implications: Performed studies enable the determination of the relation between the microstructure of commercial powders and their utilisable properties. Originality/value: The applied, different methods of structure analysis appeared to be very useful in the microstructure analysis of complex, multiphase material.
Słowa kluczowe
EN X-ray phase analysis   electron microscopy   Rietveld method   Toraya procedure   ceramics  
Wydawca International OCSCO World Press
Czasopismo Journal of Achievements in Materials and Manufacturing Engineering
Rocznik 2008
Tom Vol. 31, nr 2
Strony 408--414
Opis fizyczny Bibliogr. poz., wykr.
Twórcy
autor Dercz, G.
autor Prusik, K.
autor Pająk, L.
  • Institute of Materials Science, University of Silesia, ul. Bankowa 12, 40-007 Katowice, Poland, gdercz@op.pl
Bibliografia
[1] U. Betz, A. Sturm, J. F. Loeffler, W. Wagner, A. Wiedenmann, H. Hahn, Low-temperature isothermal sintering and microstructural characterization of nanocrystalline zirconia ceramics using small angle neutron scattering, Nanostructured Materials 12 (1999) 689-692.
[2] D. L. Bish, S. A. Howard, Quantitative phase analysis using the Rietveld method, Journal of Applied Crystallography 21 (1988) 86-91.
[3] D. L. Bish, J. E. Post, Quantitative mineralogical analysis using the Rietveld full-pattern fitting method, American Mineralogist 78 (1993) 932-940.
[4] X. Bokhimi, A. Morales, O. Novaro, M. Portilla, T. Lopez, F. Tzoompantzi, R. Gomez, Tetragonal nanophase stabilization in nondoped Sol-Gel zirconia prepared with different hydrolysis catalysts, Journal of Solid State Chemistry 135 (1998) 28-35.
[5] G. Dercz, B. Formanek, K. Prusik, L. Pająk, Microstructure of Ni(Cr)-TiC-Cr3C2-Cr7C3 composite powder, Journal of Materials Processing Technology 162-163 (2005) 15-19.
[6] G. Dercz, B. Formanek, K. Prusik, L. Pająk, Microstructure of Ni(Cr)-TiC-Cr3C2-Cr7C3 composite powder, Proceedings of the 13th Scientific International Conference ”Achievements in Mechanical and Materials Engineering” AMME'2005, Gliwice-Zakopane, 2005, 99-102.
[7] G. Dercz, K. Prusik, L. Pająk, Structure investigations of commercial zirconia ceramic powder, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 259-262.
[8] R. J. Hill, C. J. Howard, Quantitative phase analysis from neutron powder diffraction data using the Rietveld method, Journal of Applied Crystallography 20 (1987) 467-474.
[9] W. Kurzweg, R. B. Heimann, T. Troczyński, M. L. Waymann, Development of plasma-sprayed bioceramic coatings with bond coats based on titania and zirconia, Biomaterials 19 (1998) 1507-1511.
[10] R. Nitsche, M. Winterer, H. Hahn, Structure ofnanocry stalline zirconia and yttria, Nanostructured Materials 6 (1995) 679-682.
[11] B. H. O'Connor, M. D. Raven, Applications of the Rietveld refinement procedure in assaying powdered mixtures, Powder Diffraction,3 (1988) 2-6.
[12] L. Pająk, B. Formanek, G. Dercz, Rietveld analysis of intermetallic phases from Ni-Al system, Proceedings of the 11th Scientific International Conference ”Achievements in Mechanical and Materials Engineering” AMME'2002, Gliwice-Zakopane, 2002, 405-408.
[13] L. Pająk, B. Formanek, G. Dercz, Dispersion analysis of NiAl-TiC-Al2O3 composite powder, Proceedings of the 12 Scientific International Conference ”Achievements in Mechanical and Materials Engineering” AMME'2003, Gliwice-Zakopane, 2003, 723-726.
[14] L. Pająk, B. Formanek, G. Dercz, Dispersion analysis of NiAl-TiC-Al2O3 composite powder ground in high-energy attritorial mill, Journal of Materials Processing Technology 175 (2006) 334-337.
[15] H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography 2 (1969) 65-711.
[16] R. L. Snyder, J. Fiala, H. J. Bunge, Defects and microstructure analysis by diffraction, EDS IUCr Monographs on Crystallography 10, Oxford University Press Inc., New York, 1999.
[17] J. C. Taylor, Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile, Powder Diffraction 6 (1991) 2-9.
[18] J. C. Taylor, C. E. Matulis, Use of a universally measured standard profile for Rietveld quantification of montmorillonites, Powder Diffractometry 9 (1994) 119-123.
[19] H. Toraya, Array type universal profile function for powder pattern fitting, Journal of Applied Crystallography 19 (1986) 485-491.
[20] H. Toraya, Whole-Powder-Pattern Fitting without reference to a structural model application to X-ray powder diffractometer data, Journal of Applied Crystallography 19 (1986) 440-447.
[21] H. Toraya, Whole-Powder-Pattern decomposition method, The Rigaku Journal 6 (1989) 28-34.
[22] J. A. Wang, M. A. Valenzuela, J. Salmones, A. Vazquez, A. Garcia-Ruiz, X. Bokhimi, Comparative study of nanocrystalline zirconia prepared by precipitation and solgel methods, Catalysis Today 68 (2001) 21-30.
[23] R. A. Young, D. B. Wiles, Application of the Rietveld methods for structure refinement with powder diffraction data, Advances in X-Ray Analysis 24 (1980) 1-23.
[24] R. W. Young, The Rietveld method, IUCr Monograph on Crystallography, Oxford Science Publishing, 1993.
[25] W. Z. Zhu, Effect of cubic phase on the kinetics of the isothermal tetragonal to monoclinic transformation in ZrO2(3mol%Y2O3) ceramics, Ceramics International 24 (1998) 35-43.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BWAW-0002-0035
Identyfikatory