Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button


Journal of Achievements in Materials and Manufacturing Engineering

Tytuł artykułu

The kinetics of nitrogen dissolution in levitation and arc-melted Fe-C-Mn filler metals

Autorzy Gruszczyk, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Purpose: The influence of melting method on the kinetics of nitrogen absorption by Fe-C-Mn filler metals has been analysed. The industrial heats of the Fe-C-Mn (SpG1) type welding filler metals were selected for own researches. Design/methodology/approach: The research of the nitrogen absorption kinetics was carried out in the levitation and TIG arc-melting conditions in the Ar+N2 atmosphere. The conditions of experiments were made possibly close to those existing in a molten metal drop in the welding processes. Findings: Based on the models of nitrogen absorption during levitation and arc melting of Fe-C-Mn filler metals, the time-dependent changes of nitrogen content were determined as well as the mass transfer coefficients b and the rates of nitrogen absorption. Nitrogen absorption rate decreases along with the increase of oxygen content in the Fe-C-Mn filler metals arc-melted in the Ar+N2 atmosphere. Research limitations/implications: Investigation of the Fe-C-Mn complex alloys with the specified amount of impurities makes the detailed analysis of the elementary stages of nitrogen dissolution more difficult, yet brings the experiment conditions closer to those occurring in the actual welding processes. Practical implications: Recognizing the mechanisms of nitrogen absorption under arc and non-arc melting to make possible the control of nitrogen level in the welds. Originality/value: Obtained results explain the influence of oxygen and melting conditions on kinetics of nitrogen dissolution in Fe-C-Mn alloys.
Słowa kluczowe
PL azot   absorpcja   topienie łukowe   topienie lewitacyjne   spawanie   kinetyka   model  
EN nitrogen   absorption   arc melting   levitation melting   welding   kinetics   model  
Wydawca International OCSCO World Press
Czasopismo Journal of Achievements in Materials and Manufacturing Engineering
Rocznik 2008
Tom Vol. 26, nr 2
Strony 115--122
Opis fizyczny Bibliogr. 20 poz., tab., wykr.
autor Gruszczyk, A.
[1] R. D. Pehlke, Kinetics and thermodynamics of interaction between liquid metals and gases, Moscow, 1974 (in Russian).
[2] R. J. Fruehan, L. J Martonik, The Rate of absorption of Nitrogen into Liquid Iron Containing Oxygen and Sulfur, Metallurgical Transactions B 11 (1980) 615-621.
[3] R. J. Fruehan, L. J. Martonik, The Rate of Absorption of Nitrogen into Fe-Cr and Fe-Cr-Ni Alloys, Metallurgical Transactions B 12 (1981) 379-384.
[4] P. C. Glaws, R. J. Fruehan, The Kinetics of the Nitrogen Reaction with Liquid Iron-Sulfur Alloys, Metallurgical and Materials Transactions B 16 (1985) 551-559.
[5] G. R. Belton, How Fast Can We Go? The Status of Our Knowledge on the Rates of Gas-Liquid Metal Reaction, Metallurgical and Materials Transactions B 24 (1993) 241-258.
[6] N. Hirashima, R. T. C. Choo, I. M. Toguri, K. Mukai, The effect of Surface Movements on Nitrogen Mass Transfer in Liquid Iron, Metallurgical and Materials Transactions B 26 (1995) 971-980.
[7] H. Ono, H. Fukagawa, K. Morita, N. Sano, Effects of O, Se and Te on the Rate of Nitrogen Dissolution in Molten Iron, Metallurgical and Materials Transactions B 27 (1996) 848-853.
[8] C. J. Allum, Nitrogen Absorption from Welding Arc, MIS Doc. II-A-799-90 (1990).
[9] A. Dudek, Z. Nitkiewicz, Diagnostics of plasma arc during the process of remelting of surface layer in 40Cr4 steel, Archives of Materials Science and Engineering 28/6 (2007) 369-372.
[10] K. Mundra, T. DebRoy, A General Model for Partitioning of Gases between a Metal and Its Plasma Environment, Metallurgical and Materials Transactions B 26, (1995) 149-157.
[11] D. G. Howden, D. R. Milner, Hydrogen Absorption in Arc Melting, British Welding Journal 10 (1963) 304-316.
[12] M. Uda, S. Ohno, Effect of Surface Active Elements on Nitrogen Content of Iron under Arc Melting, Transactions of National Research Institute for Metals NRIM 15 (1973) 20-28.
[13] J. W. Hooijmans, G. den Ouden, The Influence of Oxygen on Nitrogen Absorption during Arc Melting of Iron, Welding Journal 71 (1992) 337-380.
[14] J. Węgrzyn, R. L. Apps, Effect of Nitrogen on Fissuring in Mild Steel Weld Deposit, British Welding Journal 15 (1968) 532-540.
[15] M. F. Sidorenko, Theory and Technology of Steel Arc Melting, Moscow, Metallurgya, 1985 (in Russian).
[16] A. Gruszczyk, The Absorption of Nitrogen by Arc Melted Fe-C-Mn Filler Metals, Gliwice, Silesian Technical University Publishing 1999 (in Polish).
[17] S. K. Choi, C. D. Yoo, Y. S. Kim, Dynamic Simulation of Metal Transfer in GMAW, Part 1: Globular and Spray Transfer Modes, Welding Journal 77 (1998) 38-43.
[18] S. K. Choi, C. D. Yoo, Y. S. Kim, Dynamic Simulation of Metal Transfer in GMAW, Part 2: Short-Circuit Transfer Mode, Welding Journal 77 (1998) 45-51.
[19] A. Farzadi, S. Serajzadeh, A. H. Kokabi, Modelling of transport phenomena in gas tungsten arc welding, Archives of Materials Science and Engineering 28/7 (2007) 417-420.
[20] I. S. Kim, J. S. Son, H. J. Kim, B. A. Chin, Development of a mathematical model to study on variation of shielding gas in GTA welding, Journal of Achievements in Materials and Manufacturing Engineering 19/2 (2006) 73-80.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BWAN-0002-0035