PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of three-colour HgCdTe detectors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of three-colour HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-colour detectors with two back-to-back junctions, three-colour structure contains an absorber of intermediate wavelength placed between two junctions and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Three-detector structures with different localizations of separating barriers are analyzed. The calculation results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. It is shown that the performance of the detector is critically dependent on the barrier's doping level and position in relation to the junction. This behaviour is serious disadvantage of the considered three-colour detector. A small shift of the barier location and doping level causes serious changes in spectral responsivity.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • 1. P. Norton, J. Campbell, S. Horn, and D. Reago, "Third-generation infrared imagers", Proc. SPIE 4130, 226-236 (2000).
  • 2. P. Norton, "HgCdTe infrared detectors", Opto-Electron.Rev. 10, 159-174 (2002).
  • 3. P.R. Norton, "Third-generation sensors for night vision", Opto-Electron. Rev. 14, 283-296 (2006).
  • 4. A. Rogalski, "HgCdTe infrared detector material: History, status, and outlook", Rep. Prog. Phys. 68, 2267-2336 (2005).
  • 5. M.Z. Tidrow, W.A. Beck, W.W. Clark, H.K. Pollehn, J.W. Little, N.K. Dhar, P.R. Leavitt, S.W. Kennedy, D.W. Beekman, A.C. Goldberg, and W.R. Dyer, "Device physics and focal plane applications of QWIP and MCT", Opto-Electron. Rev. 7, 283-296 (1999).
  • 6. D.F. King, W.A. Radford, E.A. Patten, R.W. Graham, T.F. McEwan, J.G. Vodicka, R.F. Bornfreund, P.M. Goetz, G.M. Venzor, and S.M. Johnson, "3rd-generation 1280x720 FPA development status at Raytheon Vision Systems", Proc. SPIE 6206, 62060W (2006).
  • 7. G. Destefanis, P. Ballet, J. Baylet, P. Castelein, O. Gravrand, J. Rothman, F. Rothan, G. Perrais, J.P. Chamonal, A. Million, P. Tribolet, B. Terrier, E. Sanson, P. Costa, and L. Vial, "Bi-color and dual-band HgCdTe infrared focal plane arrays at DEFIR", Proc. SPIE 6206, 62060R (2006).
  • 8. S.D. Gunapala and S.V. Bandara, "GaAs/AlGaAs based quantum well infrared photodetector focal plane arrays", in Handbook of Infrared Detection Technologies, edited by M. Henini and M. Razeghi, pp. 83-119, Elsevier, Oxford, 2002.
  • 9. A. Rogalski, "Quantum well photoconductors in infrared detectors technology", J. Appl. Phys. 93, 4355-4391 (2003).
  • 10. A. Manissadjian, D. Gohier, E. Costard, and A. Nedelcu, "Single color and dual band QWIP production results", Proc. SPIE 6206, 62060E (2006).
  • 11. M. Munzberg, R. Breiter, W. Cabanski, H. Lutz, J. Wendler, J. Ziegler, R. Rehm, and M. Walther, "Multi spectral IR detection modules and applications", Proc. SPIE 6206, 620627 (2006).
  • 12. W. Cabanski, K. Eberhardt, W. Rode, J. Wendler, J. Ziegler, J. Fleißner, F. Fuchs, R. Rehm, J. Schmitz, H. Schneider, and M. Walther, "3rd gen. focal plane array IR detection modules and applications", Proc. SPIE 5406, 184-192 (2005).
  • 13. R. Rehm, M. Walther, J. Schmitz, J. Fleißner, F. Fuchs, J. Ziegler, and W. Cabanski, "InAs/GaSb superlattice focal plane arrays for high-resolution thermal imaging", Opto-Electron. Rev. 14, 283-296 (2006).
  • 14. A. Rogalski and P. Martyniuk, "InAs/GalnSb superlattices as a promising material system for third generation infrared detectors", Infrared Phys. Technol. 48, 39-52 (2006).
  • 15. R. Rehm, M. Walther, J. Fleißner, J. Schmitz, J. Ziegler, W. Cabanski, and R. Breiter, "Bispectral thermal imaging with quantum-well infrared photodetectors and InAs/GaSb type II superlattices", Proc. SPIE 6206, 62060Y (2006).
  • 16. K. Kosai, "Status and applications of HgCdTe device modeling", J. Electron. Mater. 24, 635-640 (1995).
  • 17. K. Jóźwikowski and A. Rogalski, "Computer modeling of dual-band HgCdTe photovoltaic detectors", J. Appl. Phys. 90, 1286-1291 (2001).
  • 18. A.K. Sood, J.E. Egerton, Y.R. Pun, E. Bellotti, D. D'Orsogna, L. Becker, R. Balcerak, K. Freyvogel, and R. Richwine, "Design and development of multicolor MWIR/LWIR and LWIR/VLWIR detector arrays", J. Electron. Mater. 34, 909-912 (2005).
  • 19. E. Bellotti and D. D'Orsogna, "Numerical analysis of HgCdTe simultaneous two-colour photovoltaic infrared detectors", IEEE J. Quantum Electronics 42, 418-426 (2006).
  • 20. L.G. Hipwood, CL. Jones, CD. Maxey, H.W. Lau, J. Fitzmaurice, R.A. Catchpole, and M. Ordish, Proc. SPIE 6206, 620612 (2006).
  • 21. M. Kurata, Numerical Analysis of Semiconductor Devices, Lexington Books, DC Heath, 1982.
  • 22. W. Van Roosbroeck, "Theory of the electrons and holes in germanium and other semiconductors", Bell Syst. Tech. J. 29, 560607 (1950).
  • 23. H.K. Gummel, "A self-consistent iterative scheme for one-dimensional steady state transistor calculations", IEEE Trans. Electron Devices ED-11, 455-465 (1964).
  • 24. A. De Mari, "An accurate numerical one-dimensional solution of the p-n junction under arbitrary transient conditions", Solid State Electronics 11, 1021-1053 (1968).
  • 25. Medici Manual, Technology Modelling Associates, 1994.
  • 26. Computer program Semicad Devices, Dawn Technologies Inc., California, 1994.
  • 27. Computer program Apsys, Crosslight Software Inc., Ontario, 1998.
  • 28. D.L. Scharfetter and H.K. Gummel, "Large-signal analysis of a silicon read diode oscillator", IEEE Trans. Electron Devices ED-16, 64-77 (1969).
  • 29. W.L. Engl, H.K. Dirks, and B. Meinerzhagen, "Device modelling", Proc. IEEE 71, 10-33 (1983).
  • 30. K. Jóźwikowski, "Numerical modeling of fluctuation phenomena in semiconductor devices", J. Appl. Phys. 90, 1318-1327 (2001).
  • 31. A. Jóźwikowska, K. Jóźwikowski, J. Rutkowski, Z. Orman, and A. Rogalski, "Generation-recombination effects in high temperature HgCdTe heterostructure photodiodes", Opto-Electron. Rev. 12, 417-428 (2004).
  • 32. T.N. Casselman and P.E. Petersen, "A comparison of the dominant Auger transitions in p-type (Hg,Cd)Te", Solid State Commun. 33, 615619 (1980).
  • 33. T.N. Casselman, "Calculation of the Auger lifetime in p-type Hg1-xCdxTe", J. Appl. Phys 52, 848854 (1981).
  • 34. P.E. Petersen, "Auger recombination in mercury cadmium telluride", in Semiconductors and Semimetals, Vol. 18, pp. 121-155, edited by R.K. Willardson and A.C. Beer, Academic Press, New York, 1981.
  • 35. W.W. Anderson, "Absorption constant of Pb1xSnxTe and Hg1-xCdxTe alloys", Infrared Phys. 20, 363-372 (1980).
  • 36. A. Rogalski, J. Rutkowski, and K. Adamiec, Narrow-Gap Semiconductor Photodiodes, SPIE Optical Engineering Press, Bellingham, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0012-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.