PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Object extration as a basic process for content-based image retrieval (CBIR) system

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Fifth Symposjum on Image Processing Technology (TPO 2006) ; (5 ; 21-23.11.2006 ; Serock, Poland)
Języki publikacji
EN
Abstrakty
EN
This article describes the way in which image is prepared for content-based image retrieval system. Automated image extraction is crucial; especially, if we take into consideration the fact that the feature selection is still a task performed by human domain experts and represents a major stumbling block in the process of creating fully autonomous CBIR systems. Our CBIR system is dedicated to support estate agents. In the database, there are images of houses and bungalows. We put all our efforts into extracting elements from an image and finding their characteristic features in the unsupervised way. Hence, the paper presents segmentation algorithm based on a pixel colour in RGB colour space. Next, it presents the method of object extraction applied to obtain separate objects prepared for the process of introducing them into database and further recognition. Moreover, we present a novel method of texture identification which is based on wavelet transformation. Due to the fact that the majority of texture is geometrical (such as bricks and tiles) we have used the Haar wavelet. After a set of low-level features for all objects is computed, the database is stored with these features.
Twórcy
autor
Bibliografia
  • 1. V. Ogle and M. Stonebraker, "CHABOT: retrieval from a relational database of images", IEEE Computer 28, 40-48 (1995).
  • 2. M. Flickner and H. Sawhney, "Query by image and video content: The QBIC system", IEEE Computer 28, 23-32 (1995).
  • 3. W. Niblack and M. Flickner, "The QBIC project: Querying images by content using colour, texture and shape", Proc. SPIE 1908, 173-187 (1993).
  • 4. K.L. Tan, B.Ch. Ooi, and Ch.Y. Yee, "An evaluation of colour-spatial retrieval techniques for large image databases", Multimedia Tools and Applications 14, 55-78 (2001).
  • 5. W. Hsu, T.S. Chua, and H.K. Pung, "Approximation content-based object-level image retrieval", Multimedia Tools and Applications 12, 59-79 (2000).
  • 6. F. Mokhtarian, S. Abbasi, and J. Kittler, "Robust and efficient shape indexing through curvature scale space", Proc. British Machine Vision Conf., 53-62 (1996).
  • 7. G. Park, Y. Baek, and H.K. Lee, "Web image retrieval using majority-based ranking approach", Multimedia Tools and Applications, (in printing, 2006)
  • 8. S. Tollari, H. Glotin, and J. Mairte, "Enhancement of textual images classification using segmented visual contents for image search engine", Multimedia Tools and Applications 25, 405-417 (2005).
  • 9. ISO/MPEG N6828, Overview of MPEG-7, ver. 10, edited by J.M. Martinez, Jeju, 2004.
  • 10. P. Stanchev, "Using image mining for image retrieval", Proc. IASTED Conf., Cancun, Mexico, 214-218 (2003).
  • 11. T. Chow, M. Rahman, and S. Wu, "Content-based image retrieval by using tree-structured features and multi-layer self-organizing map", Pattern Analysis and Applications 9, 1-20 (2006).
  • 12. V. Castelli, L.D. Bergman, and I. Kontoyiannis, "Progressive search and retrieval in large image archives", IBM J. Research Development 42, 253-268 (1998).
  • 13. A. Jaimes and S.F. Chang, "Model-based classification of visual information for content-based retrieval", Proc. SPIE 3656, 402-AU (1999).
  • 14. D.Z. Hong, J.K. Wu, and S.S. Singh, "Refining image retrieval based on context-driven method", Proc. SPIE 3656, 581-593 (1999).
  • 15. H. Zhang and Z. Chen, "Relevance feedback and learning in content-based image search", WWW: the Internet and Web Information Systems 6, 131-155 (2003).
  • 16. M. Rege, M. Dong, and F. Fotouhi, "Building a user-centred semantic hierarchy in image databases", Multimedia Systems. 12, 325-338 (2006)
  • 17. A. Bamidele, F.W. Stentiford, and J. Morphett, "An attention-based approach to content-based image retrieval", BT Technology Journal 22, 151-160 (2004).
  • 18. T. Wang, Y. Rui, and J.G. Sun, "Constraint based region matching for image retrieval", Int. J. Computer Vision 56, 37-415 (2004).
  • 19. Y. Song and A. Zhang, "Analyzing scenery images by monotonic tree", Multimedia Systems 8, 495-511 (2003).
  • 20. T. Jaworska and A. Partyka, "Images database", Research Report RB/37/2005, Systems Research Institute, PAS, 2005. (in Polish)
  • 21. Y.Y. Gao, Y.J. Zhang, and F. Yu, "Semantic-based image description model and its implementation for image retrieval", Proc. 1st Int. Conf. on Image and Graphics, 657-660 (2000).
  • 22. L. Amsaleg, P. Gros, and S.A. Berrani, "Robust object recognition in images and the related database problems", Multimedia Tools and Applications 23, 221-235 (2004).
  • 23. P. Głąb, "Indexing methods of moving video images", Ph.D. Dissertation, Institute of Theoretical and Applied Informatics PAS, Gliwice, 2006. (in Polish)
  • 24. J. Fauqueur and N. Boujemaa, "Mental image search by Boolean composition of region categories", Multimedia Tools and Applications 31, 95-117 (2006).
  • 25. Y. Rubner, C. Tomasi, and L. Guibas, "The Earth mover's distance as a metric for imager retrieval", Int. J. Computer Vision 40, 99-121 (2000).
  • 26. M. Stricker and M. Orengo, "Similarity of colour images", Proc. SPIE 2420, 381-392 (1995).
  • 27. M. Swain and D. Ballard, "Colour indexing", Int. J. Computer Vision 7, 11-32 (1991).
  • 28. W. Skarbek and A. Koschan, "Colour Image Segmentation - a Survey", Technical Report 94-32, Tech. Univ. of Berlin, 1994.
  • 29. G. Seber, Multivariate Observations, Wiley, 1984.
  • 30. H. Spath, Cluster Dissection and Analysis: Theory, FORTRAN Programs, Examples, p. 226, translated by J. Goldschmidt, Halsted Press, 1985.
  • 31. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
  • 32. ISO/IEC, Multimedia Content Descriptor, ISO/IEC IS 15938:2002.
  • 33. G. Galiäski and W. Skarbek, "Images searching using dominating colours", 5th Scientific Symp. on Image Processing Techniques, November, 2006. (in Polish)
  • 34. J.C. Russ, The Image Processing. Handbook, CRC, London, pp. 361-385, 1995.
  • 35. R.M. Haralick, K. Shanmugan, and I. Dinstein, "Texture features for image classification", IEEE Transactions of Systems, Man and Cybernetics SMC-3, 610-621 (1973).
  • 36. J. Catalan, J.S. Jin, and T. Gedeon, "Reducing the dimensions for texture features for image retrieval using multilayer neural networks", in Pattern Analysis and Applications, Vol. 2, pp 196-203, Springer-Verlag, London, 1999.
  • 37. I. Daubechies, "Ten lectures on wavelets", Society for Industrial and Applied Math., Filadelfia, 1992.
  • 38. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, London, 1998.
  • 39. S. Mallat, "Multiresolution approximations and wavelet orthonormal basis of L2(R)", Trans. Amer. Math. Soc. 315, 69-87 (1989).
  • 40. L. Balmelli and A. Mojsilović, "Wavelet domain features for texture/pattern description, classification and replicability analysis", in Wavelets in Signal and Image Analysis, Chap. 7, pp. 193-212, edited by A. Petrosian and F. Meyer, Kluwer Academic Publishers, London, 2001.
  • 41. M. Fauzi and P. Lewis, "Automatic texture segmentation for content-based image retrieval application", in Pattern Analysis and Applications, Springer-Verlag, London, (in printing, 2006)
  • 42. A. Haar, "Zur theorie der orthogonalen funktionen-systeme", Math. Annul. 69, 331-371 (1910).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWA9-0012-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.