Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BWA1-0047-0004

Czasopismo

Biuletyn Instytutu Systemów Informatycznych

Tytuł artykułu

Properties of a Meshless Simulation Method of Diffusion from a Finite Source

Autorzy Dawidowicz, T. 
Treść / Zawartość
Warianty tytułu
PL Własności bezsiatkowej metody symulacji dyfuzji ze źródła skończonego
Języki publikacji EN
Abstrakty
EN The paper presents an analysis of the properties of a numerical algorithm of a diffusion simulation from a finite source based on a meshless numerical method. The simulation time dependencies and simulation errors have been presented. The range of parameters were indicated for which the method achieves physical results.
PL W pracy przedstawiono analizę właściwości algorytmu numerycznego symulacji dyfuzji ze źródła skończonego opartego o bezsiatkową metodę numeryczną. Wykazano zależności czasowe symulacji oraz przedstawiono błędy symulacji. Wskazano zakres parametrów, dla których metoda uzyskuje wyniki fizyczne.
Słowa kluczowe
PL metoda bezsiatkowa   dyfuzja   symulacja  
EN meshless method   diffusion   simulation  
Wydawca Institute of Computer and Information Systems, Faculty of Cybernetics, Military University of Technology
Czasopismo Biuletyn Instytutu Systemów Informatycznych
Rocznik 2011
Tom nr 8
Strony 25--33
Opis fizyczny Bibliogr. 29 poz., tab., wykr.
Twórcy
autor Dawidowicz, T.
  • Institute of Computer and Information Systems, Faculty of Cybernetics, Military University of Technology, Kaliskiego Str. 2, 00-908 Warsaw, Poland, tdawidowicz@wat.edu.pl
Bibliografia
[1] S. N. Atluri, S. Shen: The meshless local Petrov–Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods. Comput. Model Eng. Sci. 3, 11–51 (2002).
[2] S. N. Atluri, T. Zhu: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117-127 (1998).
[3] N. Benbouza, F. Z. Louai, N. Nait-Said: Application of Meshless Petrov Galerkin (MLPG) method in electromagnetic using Radial Basis Functions, PEMD 2008. 4th IET Conference, 650- 655 (2008).
[4] A. Benoudjit, F. Z. Louai, N. Benbouza and S. Drid: Parametric analysis by the meshless local petrov galerkin (MLPG) approach applied to electromagnetic problems. Int. J. Electrical Power Eng., 1: 138-145, 2007.
[5] Lu Huifen Jiang Hao: Application of meshless local Petrov-Galerkin methods in electromagnetics. Electrical Machines and Systems, ICEMS 2003, Sixth International Conference, vol. 2, 798-801 (2003).
[6] S. N. Atluri, H.-G. Kim, J. Y. Cho: A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods. Computational Mechanics, 24, 348-372 (1999).
[7] Bangti Jin, Yao Zheng: A meshless method for some inverse problems associated with the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 195, 2270–2288 (2006).
[8] J. Dolbow, T. Belytschko: An introduction to programming the meshless Element Free Galerkin method. Archives of Computational Methods in Engineering, 5, 207-241 (1998).
[9] Gleber Nelson Marques, Jose Marcio Machado, Sergio Luis Lopes Verardi, Stephan Stephany, Airam Jonatas Preto: Interpolating EFGM for computing continuous and discontinuous electromagnetic fields. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 26, 1411-1438 (2007).
[10] S. L. Ho, Shiyou Yang, H. C. Wong, and Guangzheng Ni: A Meshless Collocation Method Based on Radial Basis Functions and Wavelets. IEEE Transactions on Magnetics, 40, 1021-1022 (2004).
[11] Shiyou Yang, Guangzheng Ni, J. R. Cardoso, S. L. Ho, and J. M. Machado: A Combined Wavelet-Element Free Galerkin Method for Numerical Calculations of Electromagnetic Fields. IEEE Transactions on Magnetics, 39, 1413-1416 (2003).
[12] S. L. Ho, Shiyou Yang, and H. C. Wong: Weak Formulation of Finite Element Method Using Wavelet Basis Functions. IEEE Transactions on Magnetics, 37, 3203-3207 (2001).
[13] Y. Markchal: Some Meshless Methods For Electromagnetic Field Computations. IEEE Transactions on Magnetics, Vol. 34, 3351-3354 (1998).
[14] S. L. Ho, S. Yang, J. M. Machado, and H. C. Wong: Application of a Meshless Method in Electromagnetics. IEEE Transactions on Magnetics, Vol. 37, 3198-3202 (2001).
[15] Ph. Bouillarda, S. Suleaubb: Element-Free Galerkin solutions for Helmholtz problems: fomulation and numerical assessment of the pollution effect. Computer Methods in Applied Mechanics and Engineering, Vol. 162, 317-335 (1998).
[16] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl: Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139, 3-47 (1996).
[17] Vinh Phu Nguyena, Timon Rabczukb, Stéphane Bordasc, Marc Duflotd: Meshless methods: A review and computer implementation aspects. Mathematics and Computers in Simulation, Vol. 79, 763-813 (2008).
[18] T. Belytschko, Y. Y. Lu, L. Gu: Element-Free Galerkin Method. International Journal for Numerical Methods Engineering, 37, 229-256 (1994).
[19] Stephen Beissel, Ted Belytschko: Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering, Vol. 139, 49-74 (1996).
[20] Vlatko Cingoski, Naoki Miyamoto and Hideo Yamashita: Element-Free Galerkin Method for Electromagnetic Field Computations. IEEE Transactions on Magnetics, Vol. 34, No 5, 3236-3239, September 1998.
[21] J. Dolbow, T. Belytschko: Numerical integration of the Galerkin weak form in meshless methods. Computational Mechanics, 23, 219-230 (1999).
[22] Shaofan Li, Dong Qian, Wing Kam Liu, and Ted Belytschko: A meshless contactdetection algorithm. Computer Methods in Applied Mechanics and Engineering, Vol. 190, Issues 24-25, 3271-3292, March 2001.
[23] Liviu Marin: A meshless method for the numerical solution of the Cauchy problem associated with three-dimensional Helmholtz-type equations. Applied Mathematics and Computation, 165, 355-374 (2005).
[24] Marjan Sterk, Borut Robic, and Roman Trobec: Mesh Free Method Applied to the Diffusion Equation, Parallel Numerics, 57-66 (2005).
[25] J. Gawinecki, Z. Domański: Matematyka. Równania różniczkowe cząstkowe i metody ich rozwiązywania. Część II. Równiania różniczkowe i cząstkowe II-go rzędu i metody ich rozwiązywania. Skrypt WAT wewn. 2490/97.
[26] http://pracownicy.uwm.edu.pl/wojsob/projekty-edi.htm
[27] R. A. Gingold, J. J. Monaghan: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices R. Astron. Soc. 181, 375-389 (1977).
[28] L. B. Lucy: A numerical approach to the testing of the fission hypothesis. Astron. J., 82, 1013-1024 (1977).
[29] L. D. Libersky, A. G. Petscheck, T. C. Carney, J. R. Hipp, F. A. Allahdadi: High strain Lagrangian hydrodynamics. J. Comput. Phys. 109, 67-75 (1993).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BWA1-0047-0004
Identyfikatory