Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button


Machine Graphics and Vision

Tytuł artykułu

Assessmentof carotid artery stenoses in 3D contrast-enhanced magnetic resonance angiography, based on improved generation of the centerline

Autorzy Hoyos, M. H.  Orkisz, M.  Douek, P. C.  Magnin, I. E. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN A methods is proposed for generation of the centerline of 3D tubular shapes using an extensible-skeleton model. Starting from a user-selected point, the skeleton grown by iteratively adding subsequent centerline points within a prediction-estimation scheme controlled by a multi-scale analysis of the image moments. The location of the next point is predicted according the local orientation of the tubular structure. The coordinates of the predicted point are corrected under the influence of image forces and of prior model shape constraints. The extraction of artery centerlines from magnetic resonance angiography (MRA) images is described. The goal is a quantitative assessment of arterial stenoses based on cross-sectional diameters and areas of the vessel contours in the planes locally perpendicular to the centerline. For this purpose, iso-contours extraction based on an adaptive local iso-value have been implemented. The robustness and accuracy of the method have been demonstrated on MRA data on 5 reference phantoms and on 17 patients' carotid arteries. 97% of the centerlines were exploitable in the carotid arteries (100% in the phantoms). On average, the centerlines were extracted within 1 second, and the whole quantification process took less than 1 minute per artery, including interaction and display. The Mean difference (± standard deviation) between stenosis percentages, semi-automatically measured and visually estimated by radiologists, was 0,23% ± 7.89%. The reproducibility of the semi-automatic method was significantly better.
Słowa kluczowe
EN 3D centerline   active model   3D moments   angiography  
Wydawca Faculty of Applied Informatics and Mathematics of the Warsaw University of Life Sciences
Czasopismo Machine Graphics and Vision
Rocznik 2005
Tom Vol. 14, No. 4
Strony 349--378
Opis fizyczny Bibliogr. 59 poz., rys., wykr.
autor Hoyos, M. H.
  • CREATIS, CNRS Research Unit (UMR 5515), Iserm U 630, Lyon, France
  • Grupo de Ingenieria Biomedica, Grupo Imagine, Universidad de los Andes, Bogota DC, Colombia
autor Orkisz, M.
  • CREATIS, CNRS Research Unit (UMR 5515), Iserm U 630, Lyon, France
autor Douek, P. C.
  • Départment de Radiologie, Hôpital Cardiovasculaire et Pneumologique L. Pradel, Bron, France
  • CREATIS, CNRS Research Unit (UMR 5515), Iserm U 630, Lyon, France
autor Magnin, I. E.
  • CREATIS, CNRS Research Unit (UMR 5515), Iserm U 630, Lyon, France
[1] Bland J. and Altman D.: Statistical method for assessing agreement between two methods of clinical measurement. The Lancet, I, 307-310, 1986.
[2] Kass M., Witkin A. and Terzopoulos D.: Snakes: Active contour models. Int. J. Comput. Vision, 1(4), 321-331, 1987.
[3] Cohen L.D.: On active contour models and balloons. Comput. Vision Graphics Image Processing: Image Understanding, 53(2), 211-218, 1991.
[4] North American Symptomatic Carotid Endarterectomy Trial Collaborators: Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N. Engl. J. Med.(325), 445-453, 1991.
[5] Gerig G., Koller T., Szekely G., Brechbühler C. and Kübler O.: Segmentation and symbolic description of cerebral vessel structure, based on MR angiography volume data. In: Computer Assisted Radiology, Berlin, 359-365, 1993.
[6] Du Y.P., Parker D.L., Davis W.L. and Cao G.: Reduction of partial-volume artifacts with zero-filled interpolation in three-dimensional MR angiography. J. Magn. Reson. Imaging, 4, 733-741, 1994.
[7] Renaudin C.P., Barbier B., Roriz R., Revel D. and Amiel M.: Coronary arteries: new design for three-dimensional arterial phantom. Radiology, 190, 579-582, 1994.
[8] Hofman M., Visser F., van Rossum A., Vink Q., Sprenger M. and Westerhof N.: In vivo validation of magnetic resonance blood volume flow measurements with limited spatial resolution in small vessels. Magn. Reson. Med., 33(6), 778-784, 1995.
[9] Douek P., Revel D., Chazel S., Falise B., Villard .1. and Amiel M.: Fast MR angiography of the aortoiliac arteries and arteries of the lower extremity: value of bolus-enhanced, whole-volume subtraction technique. Am. J. Roentgenol., 165, 431-437, 1995.
[10] Nazarian B., Chédot C., Sequeira J.: Automatic reconstruction of irregular tubular structures using generalized cylinders. Revue de CFAO et d’informatique graphique, 11(1-2), 11-20, 1996.
[11] Verdonck B., Bloch I. and Maitre H.: Accurate segmentation of blood vessels from 3D medical images. In: ICIP’96, Lausanne, Switzerland, 3, 311-314, 1996.
[12] Prinet V., Monga O. and Ma S.: Extraction of vascular network in 3D images. In: ICIP’96, Lausanne, Switzerland, 307-310, 1996.
[13] Parker D.L., Parker D.J., Duane D.B., Du Y.P. and Goodrich K.C.: The effect of image resolution on vessel signal in high-resolution magnetic resonance angiography. J. Magn. Reson. Imaging, 6, 632-641, 1996.
[14] Swift R. D., Ramaswamy K. and Higgins W.E.: Adaptive axes generation algorithm for 3D tubular structures. In: ICIP’97, Sta Barbara, CA, USA, 2, 136-139, 1997.
[15] Lorenz C., Carlsen I.C., Buzug T.M., Fassnacht C. and Weese J.: Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In: CVRMed-MRCAS’97, Grenoble, France, Springer, LNCS 1205, 233-242, 1997.
[16] Hoogeveen R., Bakker C., Mali W. and Viergever M.A.: Vessel diameter measurements in TOF and PC angiography: a need for standardization? In: 5th annual meeting of the Int. Soc. Magn. Reson. Med., Vancouver, 1, 1847, 1997.
[17] Sato Y., Nakajima S., Shiraga N., Atsumi H., Yoshida S., Koller T., Gerig G. and Kikinis R.: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Analysis, 2(2), 143-168, 1998.
[18] Krissian K., Malandain G. and Ayache N.: Model based multiscale detection and reconstruction of 3D vessels. INRIA, Sophia Antipolis, Research report 3442, 1998.
[19] Hoogeveen R.M., Bakker C. and Viergever M.A.: Limits to the accuracy of vessel diameter measurement in MR Angiography. J. Magn. Reson. Imaging, 8(6), 1228-1235, 1998.
[20] Paik D.S., Beaulieu C.F., Jeffrey R.B., Rubin G.D. and Napel S.: Automated flight path planning for virtual endoscopy. Med. Physics, 25(5), 629-637, 1999.
[21] Frangi A.F., Niessen W.J., Hoogeveen R.M., Walsum T. and Viergever M.A.: Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans. Med. Imaging, 18(10), 946-956, 1999.
[22] Hernández-Hoyos M., Orkisz M., Roux J.P. and Douek P.: Inertia-based vessel axis extraction and stenosis quantification in 3D MRA images. In: CARS’99, Paris, Elsevier, 189-193, 1999.
[23] Wink O., Niessen W.J. and Viergever M.A.: Fast delineation and visualization of vessel in 3D angiography images. IEEE Trans. Med. Imaging, 19(4), 337-346, 2000.
[24] Avants B.B. and Williams J.P.: An adaptive minimal path generation technique for vessel tracking in CTA/CE-MRA volume images. In MICCAI’2000, Pittsburgh, PA, USA, LNCS 1935, 707-716, 2000.
[25] Sato Y., Tamura S.: Detection and quantification of line and sheet structures in 3-D images. In: MICCAI’2000, Pittsburgh, PA, USA, Springer, LNCS 1935, 154-165, 2000.
[26] Westenberg J., van der Geest R., Wasser M., van der Linden E., van Walsum T., van Assen H., de Roos A. and Reiber J.: Vessel diameter measurements in gadolinium contrast-enhanced three- dimensional MRA of peripheral arteries. Magn. Reson. Imaging, 18(1), 13-22, 2000.
[27] Bullitt E. and Aylward S.: Volume rendering of segmented tubular objects. In: MICCAI’2001, Utrecht, The Netherlands, Springer, LNCS 2208, 161-168, 2001.
[28] Aylward S., Weeks S. and Bullitt E.: Analysis of the parameter space of a metric for registering 3D vascular images. In: MICCAI’2001, Utrecht, The Netherlands, Springer, LNCS 2208, 932-939, 2001.
[29] Orkisz M. and Hernández Hoyos M.: Models for 3D vascular image analysis. J. Med. Informatics and Technol., 2(1), 13-22, 2001.
[30] van Bemmel C.M., Niessen W., Wink O., Verdonck B. and Viergever M.A.: Blood pool agent CE- MRA: improved arterial visualization of the aortoiliac vasculature in the steady-state using first-pass data. In: MICCAI’2001, Utrecht, The Netherlands, Springer, LNCS 2208, 699-706, 2001.
[31] Lin Q. and Danielsson P.E.: Stenosis detection using a new shape space for second order 3D- variations. In: IPMI, Davis, CA, USA, Springer, LNCS 2082, 388-394, 2001.
[32] Toumoulin C., Boldak C., Dillenseger J.L., Coatrieux J.L. and Rolland Y.: Fast detection and characterization of vessels in very large 3-D data sets using geometrical moments. IEEE Trans. Biomed. Eng., 48(5), 604-606, 2001.
[33] Flasque N., Desvignes M., Constans J.M. and Revenu M.: Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Med. Image Analysis, 5(3), 173-183, 2001.
[34] Kanitsar A., Wegenkittl R., Felkel P., Fleischmann D., Sandner D. and Gröller E.: Computed Tomography Angiography: a case study of peripheral vessel investigation. In: IEEE Visualization, San Diego, California, USA, 477-480, 2001.
[35] Deschamps T. and Cohen L.: Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Analysis, 5(4), 281-299, 2001.
[36] Young S., Pekar V. and Weese J.: Vessel segmentation for visualization of MRA with blood pool contrast agent. MICCAI’2001, Utrecht, The Netherlands, Springer, LNCS 2208, 491-498, 2001.
[37] Lorigo L., Faugeras O., Crimson W.E.L., Keriven R., Kikinis R., Nabavi A. and C.F.: CURVES: Curve evolution for vessel segmentation. Med. Image Analysis, 5(3), 195-206, 2001.
[38] Bullitt E., Aylward S., Smith K., Mukherji S., Jiroutek M. and Muller K.: Symbolic description of intracerebral vessels segmented from magnetic resonance angiograms and evaluation by comparison with X-ray angiograms. Med. Image Analysis, 5(2), 157-169, 2001.
[39] Frangi A.F., Niessen W.J., Nederkoorn P.J., Bakker J., Mali W.P.T.M. and Viergever M.A.: Quantitative analysis of vascular morphology from 3D MR angiograms: in vitro and in vivo results. Magn. Reson. Med., 45, 311-322, 2001.
[40] Raman R., Napel S., Beaulieu C.F., Bain E.S., Jeffrey B. and Rubin G.D.: Automated generation of curved planar reformations from volume data: method and evaluation. Radiology, 223, 275-280, 2002.
[41] Orkisz M. and Hernández Hoyos M.: From inertia matrix to the analysis of vascular pathologies. In: Int. Conf. Computer Vision and Graphics, Zakopane, Poland, 6-15, 2002.
[42] Aylward S. and Bullitt E.: Initialization, noise, singularities and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging, 21(2), 61-75, 2002.
[43] Hernández Hoyos M., Orkisz M., Puech P., Mansard-Desbleds C., Douek P.C. and Magnin I.E.: Computer assisted analysis of 3D MRA images. RadioGraphics, 22(2), pp. 421-436, 2002.
[44] Wink O., Frangi A.F., Verdonck B., Viergever M.A. and Niessen W.J.: 3D MRA coronary axis determination using a minimum cost path approach. Magn. Reson. Med., 47, 1169-1175, 2002.
[45] van Bemmel C.M., Wink O., Verdonck B., Viergever M.A. and Niessen W.J.: Blood pool contrast- enhanced MRA: improved arterial visualization in the steady-state. IEEE Trans. Med. Imaging, 22(5), 645-652, 2003.
[46] van Bemmel C.M., Spreeuwers L.J., Viergever M.A. and Niessen W.J.: Level-set-based artery-vein separation in blood pool agent CE-MR angiograms. IEEE Trans. Med. Imaging, 22(10), 1224-1234, 2003.
[47] Boldak C., Rolland Y., Toumoulin C. and Coatrieux J.L.: An improved model-based vessel tracking algorithm with application to Computed Tomography Angiography. J. Biocybernetics & Biomed. Eng., 3(1), 41-64, 2003.
[48] Larralde A., Boldak C., Garreau M., Toumoulin C., Boulmier D. and Rolland Y.: Evaluation of a 3D segmentation software for the coronary characterization in Multi-Slice Computed tomography. FIMH, Lyon, France, Springer, LNCS 2674, 39-51, 2003.
[49] Yim P.J., Vasbinder G.B.C., Ho V.B. and Choyke P.L.: Isosurfaces as deformable models for Magnetic Resonance Angiography. IEEE Trans. Med. Imaging, 22(7), 875-881, 2003.
[50] Toumoulin C., Boldak C., Garreau M. and Boulmier D.: Coronary Characterization in Multi-slice Computed Tomography. In: Computers in Cardiology, IEEE, 30, 749-752, 2003.
[51] Boskamp T., Rinck D., Link F., Kümmerlen B., Stamm G. and Mildenberger P.: New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. RadioGraphics, 24, 287-297, 2004.
[52] Tizon X.: Algorithms for the analysis of 3D Magnetic Resonance Angiography Images. Uppsala, Sweden, Acta Universitatis Agriculturae Sueciae, (ISBN 91-576-670-4), 2004.
[53] Wink O.: Vessel axis determination. Amsterdam, The Netherlands, Print Partner Ipskamp, (ISBN 90-393-3698-9), 2004.
[54] Wink O., Niessen W.J. and Viergever M.A.: Multiscale vessel tracking. IEEE Trans. Med. Imaging, 23(1), 130-133, 2004.
[55] Kirbas C. and Quek F.K.H.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv., 36(2), 81-121, 2004.
[56] van Bemmel C.M., Viergever M.A. and Niessen W.J.: Semiautomatic segmentation and stenosis quantification of 3D contrast-enhanced MR Angiograms of the internal carotid artery. Magn. Reson. Med., 51, 753-760, 2004.
[57] Chen J. and Amini A.A.: Quantifying 3-D vascular structures in MRA images using hybrid PDE and geometric deformable models. IEEE Trans. Med. Imaging, 23(10), 1251-1262, 2004.
[58] van Bemmel C.M., Elgersma O.E.H., Vonken E.P.A., Fiorelli M., Leeuven M.S. and Niessen W.J.: Evaluation of semiautomated internal carotid artery stenosis quantification from 3-dimensional contrast-enhanced MRA. Invest. Radiol., 39(7), 418-426, 2004.
[59] Nonent M., Serfaty J.M., Nigoghossian N., Rouhart F., Derex L., Rotaru C., Chirossel P., Guias B., Heauot J.F., Gouny P., Langella B., Buthion V., Jars I., P:achai C., Veyret C., Gauvrit J.Y., Lamure M. and Douek P.C.: Concordance Rate Differences of 3 Noninvasive Imaging Techniques to Measure Carotid Stenosis in Clinical Routine Practice: Results of the CARMEDAS Multicenter Study. Stroke, 35(3), 682-686, 2004.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BWA1-0013-0002