Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

64 Channel ASIC for Neurobiology Experiments

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper presents the design and measurements of 64 channel Application Specific Integrated Circuits (ASIC) for recording signals in neurobiology experiments. The ASIC is designed in 180 nm technology and operates with ± 0.9 V supply voltage. Single readout channel is built of AC coupling circuit at the input and two amplifier stages. In order to reduce the number of output lines, the 64 analogue signals from readout channels are multiplexed to a single output by an analogue multiplexer. The gain of the single channel can be set either to 350 V/V or 700 V/V. The low and the high cut-off frequencies can be tuned in 9 ÷ 90 Hz and in the 1.6 ÷ 24 kHz range respectively. The input referred noise is 7 µV rms in the bandwidth 90 Hz - 1.6 kHz and 9 µ V rms in the bandwidth 9 Hz - 24 kHz. The single channel consumes 200 µW of power and this together with other parameters make the chip suitable for recording neurobiology signals.
  • Department of Measurement and Instrumentation, AGH University of Science and Technology, Krakow, Poland,
  • [1] T. Jochum, T. Denison, and P. Wolf, “Integrated circuit amplifiers for multi-electrode intracortical recording,” Journal of Neural Engineering, vol. 6, pp. 1-26, Jan. 2009.
  • [2] S. K. Kelly and D. B. Shire, “Realization of a 15-channel, hermeticallyencased wireless subretinal prosthesis for the blind,” in Proc. IEEE EMBC ’09, Minneapolis, USA, Sep. 2-6, 2009, pp. 200-203.
  • [3] A. D. Dorval, N. Panjwani, R. Y. Qi, and W. M. Grill, “Deep brain stimulation that abolishes parkinsonian activity in basal ganglia improves thalamic relay fidelity in a computational circuit,” in Proc. IEEE EMBC ’09, Minneapolis, USA, Sep. 2-6, 2009, pp. 1565-1568.
  • [4] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, “A low power integrated circuit for a wireless 100-electrode neural recording system,” IEEE J. Solid-State Circuits, vol. 42, pp. 123-133, Jan. 2007.
  • [5] R. F. Yazicioglu, P. Merken, R. Puers, and C. V. Hoof, “A 60μw 60nv sqrtHz readout front-end for portable biopotential acquisition systems,” in Proc. IEEE EMBC ’09, Minneapolis, USA, Sep. 2-6, 2009, pp. 200-203.
  • [6] P. Kmon, M. Żołądź, P. Gryboś, and R. Szczygieł, “Design and measurements of 64-channel asic for neural signal recording,” in Proc. IEEE EMBC ’09, Minneapolis, USA, Sep. 2-6, 2009, pp. 528-531.
  • [7] P. Gryboś, W. Dąbrowski, P. Hottowy, and T. Fiutowski, “Low noise multichannel front-end electronics for recording signals from alive neuronal cells,” in Proc. MIXDES 11th international conference, Szczecin, Poland, Jun. 24-26, 2004, pp. 214-219.
  • [8] A. Litke, N. Bezayiff, E. Chichilinsky, W. Cunnigham, W. Dabrowski, A. Grillo, M. Grivich, P. Grybos, P. Hottowy, S. Kachiguine, R. Kalmar, K. Mathieson, D. Petrusca, M. Rahman, and A. Sher, “What does the eye tell the brain?: Development of system for the large-scale recording of retinal output activity,” in IEEE Nuclear Science Symposium, Portland, USA, Oct. 19-25, 2003, pp. 951-955.
  • [9] R. R. Harrison and C. Charles, “A low-power low-noise cmos amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, pp. 958-965, Jun. 2003.
  • [10] M. Żołądź, P. Gryboś, M. Kachel, P. Kmon, and R. Szczygieł, “Analogue multiplexer for neural application in 180 nm CMOS technology,” in Proc. MIXDES 16th international conference, Lodz, Poland, Jun. 25-27, 2009, pp. 230-233.
  • [11] W. Wattanapanitch, M. Fee, and R. Sarpeshkar, “An energy-efficient micropower neural recording amplifier,” Transactions on Biomedical Circuits and Systems, vol. 1, pp. 136-147, Jun. 2007.
  • [12] M. Yin and M. Ghovanloo, “A low-noise preamplifier with adjustable gain and bandwidth for biopotential recording applications,” in IEEE International Symposium on Circuits and Systems, ISCAS 2007, New Orleans, USA, May 27-30, 2007, pp. 321-324.
  • [13] P. Kmon, P. Gryboś, R. Szczygieł, and M. Żołądź, “Multichannel system for in vivo and in vitro neural signal recording,” Electrical Review, vol. 9, pp. 67-71, Sep. 2010.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.