Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Fundamenta Informaticae

Tytuł artykułu

Approximation Operators, Binary Relation and Basis Algebra in L-fuzzy Rough Sets

Autorzy Wu, Z.  Li, T.  Qin, K.  Ruan, D. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Approximation operators play a vital role in rough set theory. Their three elements, namely, binary relation in the universe, basis algebra and properties, are fundamental in the study of approximation operators. In this paper, the interrelations among the three elements of approximation operators in L-fuzzy rough sets are discussed under the constructive approach, the axiomatic approach and the basis algebra choosing approach respectively. In the constructive approach, the properties of the approximation operators depend on the basis algebra and the binary relation. In the axiomatic approach, the induced binary relation is influenced by the axiom set and the basis algebra. In the basis algebra choosing approach, the basis algebra is constructed by properties of approximation operators and specific binary relations.
Słowa kluczowe
EN L-fuzzy rough sets   approximation operators   basis algebra   binary relation   residuated lattices  
Wydawca IOS Press
Czasopismo Fundamenta Informaticae
Rocznik 2011
Tom Vol. 111, nr 1
Strony 47--63
Opis fizyczny Bibliogr. 21 poz.
autor Wu, Z.
autor Li, T.
autor Qin, K.
autor Ruan, D.
[1] Z. Pawlak: Rough sets, Communications of the ACM. 38, 1995, 89-95.
[2] Y.L. Zhang, J.J. Li, W.Z. Wu: On axiomatic characterizations of three pairs of covering based approximation operators, Information Sciences. 180, 2010, 274-287.
[3] T. Y. Lin: Introduction to the special issue on rough sets, International Journal of Approximate Reasoning. 15 1996, 287-289.
[4] E.C.C. Tsang, D.G. Chen, D.S. Yeung: Approximations and reducts with covering generalized rough sets. Computers and Mathematics with Applications. 56, 2008, 279-289.
[5] L.A. Zadeh: Fuzzy sets, Information Control. 8, 1965, 338-353.
[6] Z.J. Wu, W.F. Du, K.Y. Qin: The properties of L-fuzzy rough set based on complete residuated lattice. 2008 International Symposium on Information Science and Engieering, Shanghai, China. 2008, 617-621.
[7] D. Dubois, H. Prade: Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems. 17(2-3), 1990, 191-209.
[8] D. Dubois, H. Prade: Putting fuzzy sets and rough sets together, In Intelligent Decision Support, (Edited by R. Slowinski), Kluwer Academic, Dordrecht. 1992, 203-232.
[9] N.N. Morsi, M.M. Yakout: Axiomatics for fuzzy rough sets, Fuzzy Sets and Systems. 100, 1998, 327-342.
[10] A.M. Radzikowska, E.E. Kerre: A comparative study of fuzzy rough sets, Fuzzy Sets and System. 126, 2002, 137-155.
[11] D.S. Yeung, D.G. Chen, E.C.C. Tsang, J.W.T. Lee, and X.Z. Wang: On the Generalization of Fuzzy Rough Sets, IEEE Transactions on Fuzzy Systems. 13(3), 2005, 343-361.
[12] A.M. Radzikowska, E.E. Kerre: An algebraic characterization of fuzzy rough sets, 2004 IEEE International Conference on Fuzzy Systems. 2004, 109-114.
[13] Z.J.Wu, L.X. Yang, T.R. Li, K.Y. Qin: The basis algebra in L-fuzzy rough sets,2009 InternationalConference on Rough Set and Knowledge Technology, The Gold Coast, Australia. 2009, 320-325.
[14] W.Z. Wu, J.S. Mi, W.X. Zhang: Generalized fuzzy rough sets, Information Sciences. 151, 2003, 263-282.
[15] J. Pavelka: On fuzzy logic I: Many-valued rules of inference, II: Enriched residuated lattices and semantics of propositional calculi, III: Semantical completeness of some many-valued propositional calculi, Zeitschr. F. Math. Logik und Grundlagend. Math.. 25, 1979, 45-52, 119-134, 447-464.
[16] D. Pei: On equivalent forms of fuzzy logic systems NM and IMTL, Fuzzy Sets and Systems. 138, 2003, 187-195.
[17] F. Esteva, L. Godo: Monoidal t-norm-based logic: towards a logic for left-continuous tnorms, Fuzzy Sets and Systems. 124, 2001, 271-288.
[18] K.Y. Qin , Z. Pei. On the topological properties of fuzzy rough sets, Fuzzy sets and systems. 151, 2005, 601-613.
[19] W.Z. Wu, W.X. Zhang: Constructive and axiomatic approaches of fuzzy approximation operators, Information Sciences. 159, 2004, 233-254.
[20] Y. Y. Yao: Constructive and algebraic methods of the theory of rough sets, Information Sciences. 109, 1998, 21-47.
[21] Y.H. She, G.J. Wang: An axiomatic approach of fuzzy rough sets based on residuated lattices, Computers and Mathematics with Applications. 58, 2009, 189-201.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BUS8-0020-0089