Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-article-BUS8-0020-0088

Czasopismo

Fundamenta Informaticae

Tytuł artykułu

The Construction of Fuzzy Concept Lattices Based on (θ,σ)-Fuzzy Rough Approximation Operators

Autorzy Yao, Y.  Li, Z.  Mi, J.  Xie, B. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Formal concept analysis and rough set analysis are two complementary approaches for analyzing data. This paper studies approaches to constructing fuzzy concept lattices based on generalized fuzzy rough approximation operators. For a residual implicator θ satisfying θa, b) = *theta;(1 -b, 1 -a) and its dual σ, a pair of (θ,σ)-fuzzy rough approximation operators is defined. We then propose three kinds of fuzzy operators, and examine some of their basic properties. Thus, three complete fuzzy concept lattices can be produced, for which the properties are analogous to those of the classical concept lattices.
Słowa kluczowe
EN fuzzy concept lattices   approximation operators   fuzzy rough sets   Galois connection  
Wydawca IOS Press
Czasopismo Fundamenta Informaticae
Rocznik 2011
Tom Vol. 111, nr 1
Strony 33--45
Opis fizyczny Bibliogr. 38 poz.
Twórcy
autor Yao, Y.
autor Li, Z.
autor Mi, J.
autor Xie, B.
  • School of Computer Science and Engineering, Beihang University, Beijing 100191, P. R. China and College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, Hebei 050016, P. R. China, yaoyanqing1984@sina.com
Bibliografia
[1] Bĕlohlávek, R.: Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic, 128, 2004, 277-298.
[2] Bĕlohlávek, R.: Fuzzy Galois connections, Math. Logic Quarterly, 45(4), 1999, 497-504.
[3] Bĕlohlávek, R.: Fuzzy Relational Systems: Foundations and Principles, KluwerAcademic/PlenumPublishers, New York, 2002.
[4] Bĕlohlávek, R.: Lattices of fixed points of fuzzy Galois connections, Math. Logic Quart., 47, 2001, 111-116.
[5] Bĕlohlávek, R., Outrata, J., Vychodil, V.: Thresholds and shifted attributes in formal concept analysis of data with fuzzy attributes, in: Proc. ICCS 2006 (H. Scharfe, P. Hitzler, P. Ohrstrom, Eds.), LNAI, 4068, 117-130, Springer-Verlag, Berlin/Heidel-berg, 2006.
[6] Bĕlohlávek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges, in: The IEEE International Conference on Fuzzy Systems, Reno (Nevada, USA), 2005, 663-668.
[7] Boixader, D., Jacas, J., Recasens, J.: Upper and lower approximations off fuzzy sets, International Journal of General Systems, 29, 2000, 555-568.
[8] Burusco, A., Fuentes-Gonzáles, R.: The study of the L-fuzzy concept lattice, Mathware and Soft Computing, I(3), 1994, 209-218.
[9] Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems, 17, 1990, 191-208.
[10] D¨untsch, I., Gediga, G.: Approximation operators in qualitative data analysis, in: Theory and Application of Relational Structures as Knowledge Instruments( H. Swart, E. Orlowska, G. Schmidt, M. Roubens, Eds.), Springer, Heidelberg, 2003, 216-233.
[11] Fan, S.Q., Zhang, W.X., Xu, W.: Fuzzy inference based on fuzzy concept lattice, Fuzzy Sets and Systems, 157, 2006, 3177-3187.
[12] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, Springer, Berlin, 1999.
[13] Gediga, G., D¨untsch, I.: Modal-style operators in qualitative data analysis, in: Proceedings of the 2002 IEEE International Conference on Data Mining, 2002, 155-162.
[14] Georgescu, G., Popescu, A.: Non-dual fuzzy connections, Archive for Mathematic Logic, 43(8), 2004, 1009-1039.
[15] Hu, K., Sui, Y., Lu, Y., Wang, J., Shi, C.: Concept approximation in concept lattice, Knowledge Discovery and Data Mining,Proceedings of the 5th Pacific- Asia Conference, PAKDD 2001, LNCS 2035, 2001, 167-173.
[16] Kent, R.E.: Rough concept analysis: a synthesis of rough sets and formal concept analysis, Fundamenta Informaticae, 27, 1996, 169-181.
[17] Klir, G.J., Yuan, B.: Fuzzy Logic: Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1995.
[18] Kuncheva, L.I.: Fuzzy rough sets: application to feature selection, Fuzzy Sets and Systems, 51, 1992, 147-153.
[19] Lai, H.L., Zhang, D.X.: Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, International Journal of Approximate Reasoning, 50(5), 2009, 695-707.
[20] Mi, J.S., Leung, Y., Zhao, H.Y., Feng, T.: Generalized fuzzy rough sets determined by a triangular norm, Information Sciences, 178(16), 2008, 3203-3213.
[21] Mi, J.S., Zhang, W.X.: An axiomatic characterization of a fuzzy generalization of rough sets, Information Sciences, 160, 2004, 235-249.
[22] Morsi, N.N., Yakout,M.M.: Axiomatics for fuzzy rough sets, Fuzzy Sets and Systems, 100, 1998, 327-342.
[23] Pagliani, P.: From concept lattices to approximation spaces: algebraic structures of some spaces of partial objects, Fundamenta Informaticae, 18, 1993, 1-25.
[24] Pawlak, Z.: Rough Set, International Journal of Computer and Information Sciences, II, 1982, 341-356.
[25] Pollandt, S.: Fuzzy Begriffe: Formal Begriffsanalyse Unscharfer Daten, Springer, Berlin, 1997.
[26] Popescu, A.: A general approach to fuzzy concepts, Mathematical Logic Quarterly, 50(3), 2004, 265-280.
[27] Wang, G.J.: Non-Classical Mathematical Logic and Approximate Reasoning, Science Press, Beijing, 2000.
[28] Wang, X., Zhang, W.X.: Relations of attribute reduction between object and property oriented concept lattices, Knowledge-Based Systems, 21(5), 2008, 398-403.
[29] Ward,M., Dilworth, R.P.: Residuated lattices, Transactions of the American Mathematical Society, 45, 1939, 335-354.
[30] Wolski, M.: Galois connections and data analysis, Fundamenta Informaticae, CSP, 2003, 1-15.
[31] Wu, W.Z., Leung, Y., Mi, J.S.: On characterizations of (I, T )-fuzzy rough approximation operators, Fuzzy Sets and Systems, 154, 2005, 76-102.
[32] Yahia, S.B., Jaoua, A.: Discovering knowledge from fuzzy concept lattice, in: Data Mining and Computational Intelligence(A. Kandel, M. Last, H. Bunke, Eds.), Physica-Verlag, 2001, 167-190.
[33] Yao, Y.Y.: A comparative study of formal concept analysis and rough set theory in data analysis, in: Proceedings of the Fourth International Conference on Rough Sets and Current Trends in Computing(S. Tsumoto, R. Slowinski, J. Komorowski, Eds.), LNCS 3066, Springer, Berlin, 2004, 59-68.
[34] Yao, Y.Y.: Concept Lattices in Rough Set Theory, in: Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society (S. Dick, L. Kurgan, W. Pedrycz, M. Reformat, Eds.), IEEE Press, New York, 2004, 796-801.
[35] Zhang, W.X., Leung, Y., Xu, P.: Uncertainty Reasoning Based on inclusion Degree, Tsinghua University Press, Beijing, 2007.
[36] Zhang, W.X., Ma, J.M., Fan, S.Q.: Variable threshold concept lattices. Information Sciences, 177, 2007, 4883-4892.
[37] Zhang, W.X., Qiu, G.F.: Uncertain Decision Making Based on Rough Sets, Tsinghua University Press, Beijing, 2005.
[38] Zhang,W.X., Wang, G.J.: Fuzzy Mathematics, Xi'an Jiaotong University Press, Xi'an,
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BUS8-0020-0088
Identyfikatory